This study investigated the feasibility of glassfiber filter coated with titanium dioxide (TiO2) on removing indoor VOCs using photocatalytic technology, which could further expand the electronic filter¡¦s function .
First of all, we coated the titanium dioxide (TiO2) photocatalysts on the glassfiber filter with chemical vapor desposition (CVD) method, then dried it at 120¢J, and calcined it to prepare a nano-sized TiO2 coated filter .
Secondly, we collected VOC samples in a printery and analyzed their chemical components. The main components of VOCs (benzene¡Btoluene and acetone) were then conducted in a self-designed laboratory-scaled batch photocatalytic reactor. The decomposition of acetone for different operating parameters, including initial VOC concentration, CVD coating time, and calcination temperature, was further conducted.
Besides, a nano-sized photocatalyst indoor air purifier was self-designed for this particular study. The air purifier consists of a set of near-UV light source, a nano-sized photocatalyst glassfiber filter, a stainless shelter, and a circulating fan. The air purifier was tested to ascertain its capability on the removal of indoor VOCs in a well-tight environmental chamber. The testing results indicated the nano-sized photocatalyst glassfiber filter can be used to remove indoor VOCs .
In the final stage, a nano-sized TiO2 photocatalyst electronic air cleaner was self-designed for this particular further study in a printery. The air cleaner consists of a set of UV light source, a nano-sized photocatalyst glassfiber filter, a set of electronic filter, carborn filter and a pain coated steel plate shelter. The air cleaner was tested to ascertain its capability on the removal of indoor VOCs in a return air channel of air condition system. The testing results indicated that the nano-sized photocatalyst glassfiber filter can be used to remove indoor VOCs
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0912107-123934 |
Date | 12 September 2007 |
Creators | Wang, Ta-chang |
Contributors | Kee-Rong Wu, Chung-Shin Yuan, Chung-Hsuang Hung, Chang-Gai Lee |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0912107-123934 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.0018 seconds