tert-butyl 1-methoxycarbonyl-1-ferrocenecarbamate, Boc-NH-Fc-COOMe, (1) was synthesized according to the literature procedure and modified to 1-amino-n′-ferrocenemethylcarboxylate, 1,n′-H2N-Fc-COOCH3 (2) by removing the Boc-group with TFA/Et3N mixture in dichloromethane. Compound 2 reacted with alkylating agents like MeI, EtI, EtSCH2CH2Cl (MA) and (CN)(EtO)2P(O) (NA) to form MeNH-Fc-COOMe (3), EtNH-Fc-COOMe (4), EtSCH2CH2NH-Fc-COOMe (5), (EtO)2P(O)NH-Fc-COOMe (6), respectively. Cyclic voltammetry (CV) of these compounds showed different half-wave potential characteristics compared to aminoferrocene and was dependent on the nature of the substituents, which was rationalized by molecular orbital calculations. Electron donating groups (Me, Et and 2-chloroethyl ethylsulfide, MA) shifted the half-wave potential towards the cathodic direction while electron withdrawing group like diethyl cyanophosphonate, NA, shifted it toward anodic direction. Anodic to cathodic peak separation were found to be within 62-88 mV indicating a quasi-reversible system. <p>Hydrolysis of compound 1 resulted in the formation of tert-butyl 1-methoxycarbonyl-1-ferrocenecarboxylic acid, Boc-NH-Fc-COOH, (11) which was coupled with cystamine using the EDC/HOBt protocol to synthesize the cystamine conjugate [BocHN-Fc-CO-CSA]2 (12). This molecule is equipped with an amino group that directly linked to the redox receptor. Compound 12 was fully characterized by spectroscopic methods and by single crystal x-ray diffraction. The cystamine conjugate 12 formed films on gold substrates, which upon deprotection of the amino group, reacted with chemical warfare agents (CWAs) mimics, such as EtSCH2CH2Cl (MA), a simulant for the sulfur mustard HD, and (CN)(EtO)2P(O) (NA), a simulant for the nerve agent Tabun. Their reaction with the surface-bound ferrocene derivative results in the formation of N-substituted products. <p>CV measurements showed anodic shifts of the Fc redox potentials by 50 (±5) mV after exposure to MA, and NA. Measurements by quartz crystal microbalance (QCM) showed an increase in mass upon exposure to MA and NA. Ellipsometry measured a film thickness increase from 6 (±1) Å for the deprotected film to 10 (±4) Å for the film modified with MA and to 7 (±2) Å for the film modified with NA. The surfaces were analyzed by x-ray photoelectron spectroscopy (XPS) and clearly showed the attachment of the cystamine conjugate on the surface and its reaction with CWAs mimics.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-05222007-104556 |
Date | 22 May 2007 |
Creators | Khan, Mohammad Abdul Kader |
Contributors | Kraatz, Heinz-Bernhard |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-05222007-104556/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0127 seconds