Return to search

Explorando conjuntos de dados volumétricos multidimensionais variantes no tempo usando projeções / Exploring time-varying multidimensional volumetric datasets using projections

A área de visualização volumétrica engloba um conjunto de técnicas utilizadas na representação, manipulação e exibição de dados associados à região de um volume, possibilitando, assim, a exploração e melhor compreensão do interior de objetos de natureza tridimensional. Contudo, algumas limitações ainda são encontradas nessa área, como, por exemplo, a exploração de mais de um valor simultaneamente em conjuntos de dados volumétricos multivariados. Além desse desafio, outro objeto de grande interesse da comunidade científica é a exploração de volumes variantes no tempo. A complexidade nesse caso está em tratar ou processar uma quantidade muito grande de dados buscando descobrir propriedades, estruturas ou características que variam com o tempo. O presente trabalho propõe técnicas e abordagens, baseadas no conceito de projeções multidimensionais, visando dar apoio à análise de conjuntos volumétricos multivariados que variam no tempo. A primeira técnica proposta, denominada Fastmap*, possibilitou a projeção de espaços de alta dimensionalidade em fluxo contínuo. A segunda técnica apresentada, denominada RLNP, permitiu a projeção de dados por vizinhança mantendo a coerência temporal nos dados projetados, além de possuir a capacidade de projetar espaços de alta dimensão com um nível de stressbaixo. Também, propomos uma abordagem para a análise baseada em atributos, denominada Scatter Projection, que facilita a exploração focada em um atributo específico junto com a similaridade dos dados entre eles. Finalmente, propõe-se uma abordagem baseada na reprojeção de agrupamentos usando técnicas de seleção de atributos para tentar identificar melhor as estruturas internas do volume. Assim, o presente trabalho contribui no sentido de levantar e discutir limitações das técnicas disponíveis, e em seguida, buscar possibilidades de solução para tais questões, propondo técnicas e abordagens que possibilitam a exploração de grandes conjuntos de dados volumétricos multivariados, mantendo a coerência temporal / The area of volume visualization encompasses a set of techniques used for representation, manipulation and display of data associated with a region of a volume, thus enabling the exploration and understanding of the interior of three-dimensional objects. However, some limitations are still encountered in this area. For example, the simultaneous exploration of more than one value in multivariate volumetric datasets. Beyond this challenge, another issue of great interest to the scientific community is the exploration of time-varying volumes. The complexity of this case lies in treatment or processing of a very large amount of data, seeking to discover properties, structures, or characteristics that may vary in time. This work proposes techniques and approaches, based on the concept of multidimensional projections, in order to support multivariate volumetric analysis of time varying data sets. The first technique proposed, called Fastmap*, enables the projection of high dimensional streaming data. The second technique presented, called Recursive Laplacian-based Neiboorhood Projection, allows the projection of data sets based on neighborhoods, maintaining the temporal coherence in the projected data, besides having the ability to project highdimensional spaces with a low level of stress. Also, we propose an approach for the analysis of specific attributes, referred to as Scatter Projection, which facilitates the exploration focused on a specific attribute and on the similarity between them. Finally, we propose an approach based on reprojection of groups using feature selection techniques for better identification of internal structures of the volume. Thus, this study contributes towards surveying and discussing limitations of the area, and then seeks ways of solving these issues, proposing techniques and approaches that enable the exploration of multidimensional volumetric time varying data sets, maintaining the temporal coherence

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-03122012-150232
Date10 September 2012
CreatorsChristian Jorge Daniel Wong Cruz
ContributorsRosane Minghim, João Paulo Gois, Haim Levkowitz
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.1682 seconds