Sandra J. Chapman. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 95-103). / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- History of zinc --- p.1 / Chapter 1.2 --- The biological role of zinc --- p.2 / Chapter 1.3 --- Zinc toxicosis --- p.6 / Chapter 1.4 --- Mechanisms of zinc uptake and transport in fungi --- p.7 / Chapter 1.5 --- Bioremediation --- p.11 / Chapter 1.6 --- Uptake of heavy metals by fruit bodies of edible mushrooms --- p.13 / Chapter 1.7 --- Mushroom fungi selected for study --- p.15 / Chapter 1.8 --- Purpose of study --- p.17 / Chapter 2. --- Materials and Methods --- p.18 / Chapter 2.1 --- Organisms --- p.18 / Chapter 2.2 --- Media --- p.18 / Chapter 2.3 --- Media chelation --- p.20 / Chapter 2.4 --- Chemicals --- p.20 / Chapter 2.5 --- Zinc content of fruit bodies grown on substrates containing different concentrations of zinc --- p.21 / Chapter 2.5.1 --- Substrate preparation for V. volvacea inoculum --- p.21 / Chapter 2.5.2 --- Cultivation of V. volvacea fruit bodies --- p.21 / Chapter 2.5.3 --- Cultivation of P.sajor-caju fruit bodies --- p.22 / Chapter 2.5.4 --- Cultivation of L. edodes fruit bodies --- p.23 / Chapter 2.5.5 --- Preparation of biological material for atomic absorption spectrophotometry --- p.24 / Chapter 2.6 --- Effect of different concentrations of zinc on the growth of six mushroom fungi --- p.25 / Chapter 2.6.1 --- Radial growth study --- p.25 / Chapter 2.6.2 --- Biomass study --- p.26 / Chapter 2.7 --- Microscopic studies of V. volvacea --- p.27 / Chapter 2.7.1 --- "Coomassie Blue preparation, staining of V.volvacea hyphae" --- p.27 / Chapter 2.7.2 --- Dithizone staining of V. volvacea hyphae --- p.27 / Chapter 2.7.3 --- Fluorescence microscopy --- p.28 / Chapter 2.7.4 --- Scanning electron microscopy --- p.28 / Chapter 2.8 --- Preparation and analysis of V. volvacea proteins using gel electrophoresis --- p.29 / Chapter 3. --- Results --- p.33 / Chapter 3.1 --- Zinc Uptake by Fruit Bodies --- p.33 / Chapter 3.1.1 --- Uptake of zinc by V. volvacea --- p.33 / Chapter 3.1.2 --- Uptake of zinc by P. sajor-caju --- p.33 / Chapter 3.1.3 --- Uptake of zinc by L. edodes --- p.34 / Chapter 3.1.4 --- Symptoms of zinc toxicity in L. edodes --- p.44 / Chapter 3.2 --- Growth studies --- p.49 / Chapter 3.2.1 --- Radial growth measurements --- p.49 / Chapter 3.2.2 --- Biomass measurements --- p.56 / Chapter 3.2.3 --- Morphological alterations due to zinc observed with light and electron microscopy --- p.63 / Chapter 3.3 --- V. volvacea staining studies --- p.73 / Chapter 3.3.1 --- Protein staining using Coomassie Blue --- p.73 / Chapter 3.3.2 --- Zinc staining by dithizone and fluorescence staining by DAPI --- p.75 / Chapter 3.4 --- V. volvacea protein profile comparisons after gel electrophoresis --- p.81 / Chapter 4. --- Discussion --- p.83 / Chapter 4.1 --- Zinc uptake by fruit bodies / Chapter 4.1.1 --- Uptake of zinc by V. volvacea and P. sajor-caju fruit bodies --- p.83 / Chapter 4.1.2 --- Accumulation of zinc by L. edodes fruit bodies and mechanism of toxicity --- p.84 / Chapter 4.2 --- Effects of zinc on growth --- p.88 / Chapter 4.3 --- V. volvacea mechanisms of tolerance --- p.89 / Chapter 4.4 --- Differences in protein profiles of V. volvacea grown on different concentrations of zinc --- p.93 / Chapter 5. --- References
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_318086 |
Date | January 1994 |
Contributors | Chapman, Sandra J., Chinese University of Hong Kong Graduate School. Division of Biology. |
Publisher | Chinese University of Hong Kong |
Source Sets | The Chinese University of Hong Kong |
Language | English |
Detected Language | English |
Type | Text, bibliography |
Format | print, iv, 103 leaves : ill. (chiefly mounted col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0019 seconds