Return to search

Généralisation du diagramme de Voronoï et placement de formes géométriques complexes dans un nuage de points. / Generalizing the Voronoi diagram and placing complex geometric shapes among a point-set.

La géométrie algorithmique est une discipline en pleine expansion dont l'objet est la conception d'algorithmes résolvant des problèmes géométriques. De tels algorithmes sont très utiles notamment dans l'ingénierie, l'industrie et le multimédia. Pour être performant, il est fréquent qu'un algorithme géométrique utilise des structures de données spécialisées.Nous nous sommes intéressés à une telle structure : le diagramme de Voronoï et avons proposé une généralisation de celui-ci. Ladite généralisation résulte d'une extension du prédicat du disque vide (prédicat propre à toute région de Voronoï) à une union de disques. Nous avons analysé les régions basées sur le prédicat étendu et avons proposé des méthodes pour les calculer par ordinateur.Par ailleurs, nous nous sommes intéressés aux « problèmes de placement de formes », thème récurrent en géométrie algorithmique. Nous avons introduit un formalisme universel pour de tels problèmes et avons, pour la première fois, proposé une méthode de résolution générique, en ce sens qu'elle est apte à résoudre divers problèmes de placement suivant un même algorithme.Nos travaux présentent, d'une part, l'avantage d'élargir le champ d'application de structures de données basées sur Voronoï. D'autre part, ils facilitent de manière générale l'utilisation de la géométrie algorithmique, en unifiant définitions et algorithmes associés aux problèmes de placement de formes. / Computational geometry is an active branch of computer science whose goal is the design of efficient algorithms solving geometric problems. Such algorithms are useful in domains like engineering, industry and multimedia. In order to be efficient, algorithms often use special data structures.In this thesis we focused on such a structure: the Voronoi diagram. We proposed a new generalized diagram. We have proceeded by extending the empty disk predicate (satisfied by every Voronoi region) to an arbitrary union of disks. We have analyzed the new plane regions based on the extended predicate, and we designed algorithms for computing them.Then, we have considered another topic, which is related to the first one: shape placement problems. Such problems have been studied repeatedly by researchers in computational geometry. We introduced new notations along with a global framework for such problems. We proposed, for the first time a generic method, which is able to solve various placement problems using a single algorithm.Thus, our work extend the scope of Voronoi based data structures. It also simplifies the practical usage of placement techniques by unifying the associated definitions and algorithms.

Identiferoai:union.ndltd.org:theses.fr/2012MULH4083
Date22 November 2012
CreatorsIwaszko, Thomas
ContributorsMulhouse, Melkemi, Mahmoud, Idoumghar, Lhassane
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds