Return to search

Exact and heuristic algorithms for the Euclidean Steiner tree problem

In this thesis, we study the Euclidean Steiner tree problem (ESTP) which arises in the field of combinatorial optimization. The ESTP asks for a network of minimal total edge length spanning a set of given terminal points in Rd with the ability to add auxiliary connecting points (Steiner points) to decrease the overall length of the network. The graph theory literature contains extensive studies of exact, approximation, and heuristic algorithms for ESTP in the plane, but less is known in higher dimensions. The contributions of this thesis include a heuristic algorithm and enhancements to an exact algorithm for solving the ESTP.
We present a local search heuristic for the ESTP in Rd for d ≥ 2. The algorithm utilizes the Delaunay triangulation to generate candidate Steiner points for insertion, the minimum spanning tree to create a network on the inserted points, and second order cone programming to optimize the locations of Steiner points. Unlike other ESTP heuristics relying on the Delaunay triangulation, the algorithm inserts Steiner points probabilistically into Delaunay triangles to achieve different subtrees on subsets of terminal points. The algorithm extends effectively into higher dimensions, and we present computational results on benchmark test problems in Rd for 2 ≤ d ≤ 5.
We develop new geometric conditions derived from properties of Steiner trees which bound below the number of Steiner points on paths between terminals in the Steiner minimal tree. We describe conditions for trees with a Steiner topology and show how these conditions relate to the Voronoi diagram. We describe more restrictive conditions for trees with a full Steiner topology and their implementation into the algorithm of Smith (1992). We present computational results on benchmark test problems in Rd for 2 ≤ d ≤ 5.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-1940
Date01 July 2010
CreatorsVan Laarhoven, Jon William
ContributorsAnstreicher, K. M. (Kurt M.), Ohlmann, Jeffrey W.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2010 Jon William Van Laarhoven

Page generated in 0.0025 seconds