Return to search

Assessment of hydrokinetic renewable energy devices and tidal energy potential at Rose Dhu Island, GA

Current hydro-turbines aim to capture the immense energy available in tidal movements, however commonly applied technologies rely on principles more applicable in hydroelectric dams. Tidal stream currents, such as in Coastal Georgia, are not strong enough to make such turbines both efficient and economically viable. This research proposes a novel low-energy vortex shedding vertical axis turbine (VOSTURB) to combat the inefficiencies and challenges of hydro-turbines in low velocity free tidal streams.
Some of the energy in tidal streams is extracted naturally from vortex shedding; as water streams past a bluff body, such as pier, low pressure vortices form alternatively on each side, inducing a rhythm of pressure differentials on the bluff body and anything in its wake. VOSTURB aims to capture this energy of the vortices by installing a hydrofoil subsequent to the bluff body. This foil, free to oscillate, translates the vortex energy into oscillatory motion, which can be converted into a form of potential energy. The presented research will act as a 'proof of concept.' It aims to assess such foil motion, or the ability of VOSTURB to capture vortex energy, and begin to assess the amount of tidal energy that can be theoretically harnessed.
In this study a small scale model of VOSTURB, a cylindrical bluff body with a hammer shaped hydrofoil, was tested in a hydraulic flume for various mean flow speeds. Tangential accelerations of the foil's center of gravity were obtained through the use of an accelerometer. The acceleration data was analyzed utilizing Fourier analysis to determine the fundamental frequency of the wing oscillations. The available power to be harnessed from the oscillatory motion was then estimated utilizing this fundamental frequency.
Ultimately it was found that the frequency of the VOSTURB foil oscillations corresponded highly with the theoretical frequency of vortex shedding for all moderate to high flow speeds. Low speeds were found to produce inconsistent and intermittent small oscillations. This signifies at moderate to high flow speeds, VOSTURB was able to transform some vortical energy into kinetic. The maximum average power obtained 8.4 mW corresponded to the highest flow velocity 0.27 m/s. Scaled to Rose Dhu prototype conditions this represented 50 W at a flow velocity of 0.95m/s, the maximum available at Rose Dhu.
Although it was ascertained that VOSTURB could consistently capture some of the vortical energy; the percentage of which could not be calculated with certainty. Thus, the average kinetic power assessments of the foil were compared to the available power of the mean flow for each flow speed calculated by two methods: (1) over the foil's swept area; (2) the area of fluid displaced by the bluff body immediately in front of the foil. The maximum efficiency of the foil, found for the fastest flow speed was at 18% and 45% respectively. It was found that both average foil power, available flow power, and efficiency all decreased with a decrease in flow velocity.
This study can serve as only a preliminary study for the effectiveness of VOSTURB as a hydro-turbine for tidal power. In the experiments, the foil was allowed to oscillate freely with little resistance. Future testing of VOSTURB needs to observe whether the vortex energy can overcome the resistive torque introduced by a generator to induce oscillatory motion as well as further optimize the foil design. While the testing in this project assesses the kinetic energy or power of the vortex shedding, this future testing will provide insight into the actual work that can actually be converted into potential energy or power.
Complementing this research, both a Harmonic Analysis of Least Squares (HAMELS) and a Complex Empirical Orthogonal Function (CEOF) Analysis was conducted on available surface height and current velocity data separately from an available Regional Ocean Modeling System (ROMS) model of Coastal Georgia. Such analysis were conducted to observe spatial and temporal tidal patterns advantageous to a possible prototype installation of a tidal turbine such as VOSTURB. The more conventional HAMELS analysis, which isolates components of a signal with a certain frequency, identified temporal and spatial patterns attributed to tidal constituents. CEOF analysis, where major patterns of variance are identified not according to prescribed frequencies, was employed to identify any patterns possible not attributed to the tidal constituents. This study was also in part to observe whether the CEOF analysis could identify any patterns of tidal propagation that could not be resolved by the HAMELS analysis.
The CEOF and HAMELS analysis of the surface height output produced very similar results: major modes of surface height variation due to the diurnal and semidiurnal tidal constituents propagating up the estuary. The CEOF results did not produce any additional information that could not be found through the HAMELS analysis of the constituents and presented such results in an arguably more convoluted manner. In addition, the surface height analysis provided no direct insight into areas more advantageous to tidal power. The CEOF analysis of the vector current velocity data however did provide some insight. The CEOF of the current data was able to isolate patterns of variance corresponding to the tidal constituents. However, the CEOF was also able to identify local 'hotspots' of high current magnitudes not resolved by HAMELS. These local areas of high current magnitudes, most likely due to changes in hydrodynamic conditions such as channel constrictions, are advantageous for tidal power applications. These general areas could serve as a starting point for the location selection process for a possible prototype installation of VOSTURB if the area was refined more.
Ultimately for a prototype installation of VOSTURB, further experimentation and analysis is required for both the turbine design and placement, such as a power conversion methodology for the turbine and a more spatially resolute set of data to perform a CEOF analysis on. With these tasks completed, the prototype installation will be part of a larger effort between the Georgia Institute of Technology and the Girl Scouts of America to create completely sustainable "Eco-Village" on Rose Dhu Island, GA. With an extensive community outreach planned to educate the public, Rose Dhu, along with championing hydrokinetic energy, will serve as a paradigm for sustainable design and energy.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/41198
Date07 July 2011
CreatorsBruder, Brittany Lynn
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0027 seconds