Return to search

The wake of an exhaust stack in a crossflow

Relatively few studies have been carried out on the turbulent wake structure of a finite circular cylinder and a stack partially immersed in a flat-plate turbulent boundary layer. There is a need to develop a better understanding of the wakes of these structures, since they have many important engineering applications. This thesis investigates the influence of the aspect ratio on the wake of a finite circular cylinder and the effects of the ratio of jet flow velocity to crossflow velocity (velocity ratio, R) on the wake of a stack in a cross-flow. <p>The wake characteristics of flows over a finite circular cylinder at four different aspect ratios (AR = 3, 5, 7 and 9) were investigated experimentally at a Reynolds number of ReD = 6104 using two-component thermal anemometry. Each cylinder was mounted normal to a ground plane and was either completely or partially immersed in a flat-plate turbulent boundary layer. The ratio of boundary layer thickness to the cylinder diameter was 3. <p>A similar turbulent wake structure (time-averaged velocity, turbulence intensity, and Reynolds shear stress distributions) was found for the cylinders with AR = 5, 7, and 9, while a distinctly different turbulent wake structure was found for the cylinder with AR = 3. This was consistent with the results of a previous study that focused on the time-averaged streamwise vortex structures in the wake. In addition, irrespective of the value of AR, high values were observed for the skewness and flatness factors around the free end of the cylinders, which may be attributed to the interaction of the tip vortex structures and downwash flow that dominates this region of the cylinder.<p>The wake characteristics of a stack of aspect ratio AR = 9 were investigated using both the seven-hole pressure probe and thermal anemometry. The seven-hole probe was used to measure the three components of the time-averaged velocity field, while the thermal anemometry was used to measure two components of the turbulent velocity field at various downstream locations from the stack. The stack was mounted normal to the ground plane and was partially immersed in a flat-plate turbulent boundary layer, for which the ratio of boundary layer thickness to the stack diameter was 4.5. In addition, measurements of the vortex shedding frequency were made with a single-component hot-wire probe. The cross-flow Reynolds number was ReD = 2.3 x 104, the jet Reynolds number ranged from Red = 7.6 x 103 to 4.7 x 104, and R was varied from 0 to 3. <p>In the stack study, three flow regimes were identified depending on the value of R: the downwash (R < 0.7), cross-wind-dominated (0.7 < R < 1.5), and jet-dominated (R ≥ 1.5) flow regimes. Each flow regime had a distinct structure for the time-averaged velocity and streamwise vorticity fields, and turbulence characteristics, as well as the variation of the Strouhal number and the power spectrum of the streamwise velocity fluctuations along the stack height. The turbulence structure is complex and changes in the streamwise and wall-normal directions within the near and intermediate stack and jet wakes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip-vortex pair and base-vortex pair were similar to those found in the wake of a finite circular cylinder, located close to the free end and the base of the stack (ground plane), respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair has the same orientation as the base vortex pair and is associated with the jet rise.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-04212008-124717
Date23 April 2008
CreatorsAdaramola, Muyiwa S
ContributorsSimonson, Carey J., Maule, Charles P., Martinuzzi, Robert, Guo, Huiqing, Bugg, James D., Bergstrom, Donald J., Sumner, David
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-04212008-124717/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0036 seconds