Return to search

Contribution à la modélisation des interactions fluides-structures

Les buts principaux recherchés de la présente thèse visent au développement et à l’expertise d’une méthodologie de simulation numérique des problèmes d’interactions fluides-structures. Afin de cerner progressivement le problème étudié, nous nous sommes intéressés en premier lieu à la simulation numérique des écoulements autour d’obstacles solides, plus particulièrement au phénomène d’éclatements tourbillonnaires dans la zone de sillage d’obstacles de différentes formes. Nous avons utilisé la méthode des éléments finis en adoptant la technique de stabilisation GLS (Galerkin Least-Square). Pour le traitement de la turbulence, nous avons opté pour la méthode LES (Large-Eddy Simulation) en utilisant le filtre de Smagorinsky. En deuxième phase, nous nous sommes intéressés aux écoulements en milieux déformables. Nous avons entrepris la formulation ALE (Arbitrairement Lagrangienne Eulérienne) en considérant un maillage déformable. Pour la mise à jour de la grille du maillage dynamique, nous avons utilisé une approche pseudo-élastique. Afin d’expertiser la méthodologie mise en oeuvre, nous avons choisi d’aborder le problème des ballottements à la surface libre de réservoirs partiellement remplis de liquide. En dernière partie, nous nous sommes intéressés au comportement vibratoire d’un corps solide sous l’effet d’un écoulement de fluide. Par l’utilisation d’un algorithme de couplage totalement implicite basé sur la méthode de Gauss-Seidel par Bloc, nous avons abordé le phénomène des instabilités aéroélastiques des ponts à haubans. Pour la validation du modèle numérique traitant les interactions fluides-structures par les données expérimentales, nous nous sommes intéressés au comportement vibratoire d’une maquette sectionnelle d’un tablier de pont réel sous l’effet d’un vent soufflant uniforme. / The main goals sought by this thesis target the development and expertise of a methodology for numerical simulation of fluid-structure interactions problems. In order to identify the studied problem progressively, we are interested primarily in numerical simulation of flows around bluff bodies, especially the phenomenon of vortex shedding in the wake zone of a bluff body of different shapes. We used the finite element method by adopting the stabilized GLS (Galerkin Least-Square) technique. For the treatment of turbulence, we opted the LES (Large-Eddy Simulation) method using the Smagorinsky filter. In the second phase, we were interested in flows in deformable media. We undertook the ALE (Arbitrary Lagrangian Eulerian) formulation by considering a deformable mesh. To update the grid of the dynamic mesh, we used a pseudo-elastic approach. To appraise the implemented methodology, we decided to approach the problem of sloshing at the free surface of a tank partially filled with liquid. In the final part, we were interested in vibration behavior of a solid body under the effect of fluid flow. By using a fully implicit coupling algorithm based on a relaxed Bloc Gauss-Seidel method, we studied the phenomenon of aeroelastic instability of cable-stayed bridges. To validate the numerical model treating fluid-structure interactions by experimental data, we investigated the vibration behavior of a real deck sectional model under the effect of a uniform wind.

Identiferoai:union.ndltd.org:theses.fr/2011REIMS009
Date14 April 2011
CreatorsBelakroum, Rassim
ContributorsReims, Université Mentouri-Constantine, Kadja, Mahfoud, Mai, Ton Hoang
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds