Return to search

A Generalized Low Order Model for Vortex Shedding From a Tandem Cylinder Arrangement Using Delay Coupled Van der Pol Oscillators

A generalized low order model (LOM) for the fluctuating lift coefficient caused by vortex shedding from a tandem cylinder pair is proposed to expand upon models from previous authors. This model could provide a reduced computational time method for collecting qualitative and quantitive data from a tandem shedding pair. A delay coupled system with sufficient bifurcation characteristics is developed to account for the different flow regimes (extended-body, reattachment, and co-shedding) which occur as cylinder spacing is varied. Coefficient and parameter fitting is performed to fit experimental data. Finally, results and physical interpretations of the interactions in the model are discussed. It was found that many aspects of the flow at varying L/D ratios could be modeled by the LOM, including vortex suppression in the forward cylinder at the critical spacing, and amplitude growth in the rear cylinder in the co-shedding regime.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses-1961
Date01 January 2020
CreatorsSoroka, Michael
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHonors Undergraduate Theses

Page generated in 0.0018 seconds