Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho é apresentado um novo método acurado com passo de tempo fracionário, baseado em uma técnica de decomposição de operadores, para a solução numérica de um sistema governante de equações diferenciais parciais que modela escoamento trifásico água-gás-óleo imiscível em reservatórios de petróleo heterogêneos no qual os efeitos de compressibilidade do gás não foram levados em conta. A técnica de decomposição de operadores em dois níveis permite o uso de passos de tempo distintos para os três problemas definidos pelo procedimento de decomposição: convecção, difusão e pressão-velocidade. Um sistema hiperbólico de leis de conservação que modela o transporte convectivo das fases fluidas é aproximado por um esquema central de diferenças finitas explícito, conservativo, não oscilatório e de segunda ordem. Este esquema é combinado com elementos finitos mistos, localmente conservativos, para a aproximação numérica dos sistemas de equações parabólico e elíptico associados aos problemas de transporte difusivo e de pressão-velocidade, respectivamente. O operador temporal associado ao sistema parabólico é resolvido fazendo-se uso de uma estratégia implícita de solução (Backward Euler). O modelo matemático para escoamento trifásico considerado neste trabalho leva em conta as forças de capilaridade e expressões gerais para as funções de permeabilidade relativa, campos variáveis de porosidade e de permeabilidade e os efeitos da gravidade. A escolha de expressões gerais para as funções de permeabilidade relativa pode levar à perda de hiperbolicidade escrita e, desta maneira, à existência de uma região elíptica ou de pontos umbílicos para o sistema não linear de leis de conservação hiperbólicas que descreve o transporte convectivo das fases fluidas. Como consequência, a perda de hiperbolicidade pode levar à existência de choques não clássicos (também chamados de choques transicionais ou choques subcompressivos) nas soluções de escoamentos trifásicos. O novo procedimento numérico foi usado para investigar a existência e a estabilidade de choques não clássicos, com respeito ao fenômeno de fingering viscoso, em problemas de escoamentos trifásicos bidimensionais em reservatórios heterogêneos, estendendo deste modo resultados disponíveis na literatura para problemas de escoamentos trifásicos unidimensionais. Experimentos numéricos, incluindo o estudo de estratégias de injeção alternada de água e gás (Water-Alternating-Gas (WAG)), indicam que o novo procedimento numérico proposto conduz com eficiência computacional a resultados numéricos com precisão. Perspectivas para trabalhos de pesquisa futuros são também discutidas, tomando como base os desenvolvimentos reportados nesta tese. / We present a new, accurate fractional time-step method based on an operator splitting technique for the numerical solution of a system of partial differential equations modeling three-phase immiscible water-gas-oil flow problems in heterogeneous petroleum reservoirs in which the compressibility effects of the gas was not take into account. A two-level operator splitting technique allows for the use of distinct time steps for the three problems defined by the splitting procedure: convection, diffusion and pressure-velocity. A system of hyperbolic conservation laws modelling the convective transport of the fluid phases is approximated by a high resolution, nonoscillatory, second-order, conservative central difference scheme in the convection step. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the parabolic and elliptic problems associated with the diffusive transport of fluid phases and the pressure-velocity problem, respectively. The time discretization of the parabolic problem is performed by means of the implicit backward Euler method. The mathematical model for the three-phase flow considered in this work takes into account capillary forces and general expressions for the relative permeability functions, variable porosity and permeability fields, and the effect of gravity. The choice of general expressions for the relative permeability functions may lead to the loss of strict hyperbolicity and, therefore, to the existence of an elliptic region of umbilic points for the systems of nonlinear hyperbolic conservation laws describing the convective transport of the fluid phases. As a consequence, the loss of hyperbolicity may lead to the existence of nonclassical shocks (also called transitional shocks or undercompressive shocks) in three-phase flow solutions. The numerical procedure was used in an investigation of the existence and stability of nonclassical shocks with respect to viscous fingering in heterogeneous two-dimensional flows, thereby extending previous results for one-dimensional three-phase flow available in the literature. Numerical experiments, including the study of Water-Alternating-Gas (WAG) injection strategies, indicate that the proposed new numerical procedure leads to computational efficiency and accurate numerical results. Directions for further research are also discussed, based on the developments reported in this thesis.
Identifer | oai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:BDTD_UERJ:oai:www.bdtd.uerj.br:163 |
Date | 26 February 2007 |
Creators | Eduardo Cardoso de Abreu |
Contributors | Luis Felipe Feres Pereira, Helio Pedro Amaral Souto, Dan Marchesin, Steven Dufour, Alvaro Luiz Gayoso de Azeredo Coutinho, Jim Douglas Jr. |
Publisher | Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Modelagem Computacional, UERJ, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UERJ, instname:Universidade do Estado do Rio de Janeiro, instacron:UERJ |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds