Return to search

A Two-Dimensional Horizontal Wave Propagation and Mud Mass Transport Model on Muddy Coastal Regions

It is well known that surface water waves interact with fluid mud on the sea bed. Wave mud interaction results in high wave energy dissipation and mud mass transport. This kind of wave energy dissipation, which generally is much more significant than wave dissipation due to bottom friction, should be considered in the simulation of wave evolution and transformation in muddy coastal environments.
In this research, a two-dimensional horizontal wave propagation and morphodynamic model for muddy coasts was developed. The model can be applied on a general three dimensional bathymetry of a soft muddy coast to calculate wave damping, fluid mud transport and resulting bathymetry change under wave action. In addition to the effect of wave-mud interaction on wave propagation, the dissipation due to wave-mud interaction was also implemented in SWAN (a third generation numerical model for Simulating WAves Nearshore) using a multilayered wave mud interaction model. These two models combined can be used for generation and propagation of waves in muddy coastal areas. The nonlinear constitutive equations of the visco-elastic-plastic model are adopted for the rheological behavior of fluid mud in this research.
The results of the numerical model are compared against a series of wave-basin experiments, wave flume experiments and field observations. Comparisons between the simulated results with the both field and laboratory data reveal the capability of the proposed model to predict the wave transformation and mud mass transport. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2009-07-24 11:18:18.622

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/2000
Date24 July 2009
CreatorsOVEISY, ALI
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format1482793 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0024 seconds