Return to search

Interoperability of wireless communication technologies in hybrid networks : evaluation of end-to-end interoperability issues and quality of service requirements

Hybrid Networks employing wireless communication technologies have nowadays brought closer the vision of communication “anywhere, any time with anyone”. Such communication technologies consist of various standards, protocols, architectures, characteristics, models, devices, modulation and coding techniques. All these different technologies naturally may share some common characteristics, but there are also many important differences. New advances in these technologies are emerging very rapidly, with the advent of new models, characteristics, protocols and architectures. This rapid evolution imposes many challenges and issues to be addressed, and of particular importance are the interoperability issues of the following wireless technologies: Wireless Fidelity (Wi-Fi) IEEE802.11, Worldwide Interoperability for Microwave Access (WiMAX) IEEE 802.16, Single Channel per Carrier (SCPC), Digital Video Broadcasting of Satellite (DVB-S/DVB-S2), and Digital Video Broadcasting Return Channel through Satellite (DVB-RCS). Due to the differences amongst wireless technologies, these technologies do not generally interoperate easily with each other because of various interoperability and Quality of Service (QoS) issues. The aim of this study is to assess and investigate end-to-end interoperability issues and QoS requirements, such as bandwidth, delays, jitter, latency, packet loss, throughput, TCP performance, UDP performance, unicast and multicast services and availability, on hybrid wireless communication networks (employing both satellite broadband and terrestrial wireless technologies). The thesis provides an introduction to wireless communication technologies followed by a review of previous research studies on Hybrid Networks (both satellite and terrestrial wireless technologies, particularly Wi-Fi, WiMAX, DVB-RCS, and SCPC). Previous studies have discussed Wi-Fi, WiMAX, DVB-RCS, SCPC and 3G technologies and their standards as well as their properties and characteristics, such as operating frequency, bandwidth, data rate, basic configuration, coverage, power, interference, social issues, security problems, physical and MAC layer design and development issues. Although some previous studies provide valuable contributions to this area of research, they are limited to link layer characteristics, TCP performance, delay, bandwidth, capacity, data rate, and throughput. None of the studies cover all aspects of end-to-end interoperability issues and QoS requirements; such as bandwidth, delay, jitter, latency, packet loss, link performance, TCP and UDP performance, unicast and multicast performance, at end-to-end level, on Hybrid wireless networks. Interoperability issues are discussed in detail and a comparison of the different technologies and protocols was done using appropriate testing tools, assessing various performance measures including: bandwidth, delay, jitter, latency, packet loss, throughput and availability testing. The standards, protocol suite/ models and architectures for Wi-Fi, WiMAX, DVB-RCS, SCPC, alongside with different platforms and applications, are discussed and compared. Using a robust approach, which includes a new testing methodology and a generic test plan, the testing was conducted using various realistic test scenarios on real networks, comprising variable numbers and types of nodes. The data, traces, packets, and files were captured from various live scenarios and sites. The test results were analysed in order to measure and compare the characteristics of wireless technologies, devices, protocols and applications. The motivation of this research is to study all the end-to-end interoperability issues and Quality of Service requirements for rapidly growing Hybrid Networks in a comprehensive and systematic way. The significance of this research is that it is based on a comprehensive and systematic investigation of issues and facts, instead of hypothetical ideas/scenarios or simulations, which informed the design of a test methodology for empirical data gathering by real network testing, suitable for the measurement of hybrid network single-link or end-to-end issues using proven test tools. This systematic investigation of the issues encompasses an extensive series of tests measuring delay, jitter, packet loss, bandwidth, throughput, availability, performance of audio and video session, multicast and unicast performance, and stress testing. This testing covers most common test scenarios in hybrid networks and gives recommendations in achieving good end-to-end interoperability and QoS in hybrid networks. Contributions of study include the identification of gaps in the research, a description of interoperability issues, a comparison of most common test tools, the development of a generic test plan, a new testing process and methodology, analysis and network design recommendations for end-to-end interoperability issues and QoS requirements. This covers the complete cycle of this research. It is found that UDP is more suitable for hybrid wireless network as compared to TCP, particularly for the demanding applications considered, since TCP presents significant problems for multimedia and live traffic which requires strict QoS requirements on delay, jitter, packet loss and bandwidth. The main bottleneck for satellite communication is the delay of approximately 600 to 680 ms due to the long distance factor (and the finite speed of light) when communicating over geostationary satellites. The delay and packet loss can be controlled using various methods, such as traffic classification, traffic prioritization, congestion control, buffer management, using delay compensator, protocol compensator, developing automatic request technique, flow scheduling, and bandwidth allocation.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:537023
Date January 2011
CreatorsAbbasi, Munir A.
ContributorsStergioulas, L.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/5562

Page generated in 0.0025 seconds