Return to search

Efficient Handling of Narrow Width and Streaming Data in Embedded Applications

Embedded environment imposes severe constraints of system resources on embedded applications. Performance, memory footprint, and power consumption are critical factors for embedded applications. Meanwhile, the data in embedded applications demonstrate unique properties. More specifically, narrow width data are data representable in considerably fewer bits than in one word, which nevertheless occupy an entire register or memory word and streaming data are the input data processed by an application sequentially, which stay in the system for a short duration and thus exhibit little data locality. Narrow width and streaming data affect the efficiency of register, cache, and memory and must be taken into account when optimizing for performance, memory footprint, and power consumption.This dissertation proposes methods to efficiently handle narrow width and streaming data in embedded applications. Quantitative measurements of narrow width and streaming data are performed to provide guidance for optimizations. Novel architectural features and associated compiler algorithms are developed. To efficiently handle narrow width data in registers, two register allocation schemes are proposed for the ARM processor to allocate two narrow width variables to one register. A static scheme exploits maximum bitwidth. A speculative scheme further exploits dynamic bitwidth. Both result in reduced spill cost and performance improvement. To efficiently handle narrow width data in memory, a memory layout method is proposed to coalesce multiple narrow width data in one memory location in a DSP processor, leading to fewer explicit address calculations. This method improves performance and shrinks memory footprint. To efficiently handle streaming data in network processor, two cache mechanisms are proposed to enable the reuse of data and computation. The slack created is further transformed into reduction in energy consumption through a fetch gating mechanism.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/193816
Date January 2006
CreatorsLi, Bengu
ContributorsGupta, Rajiv, Gupta, Rajiv, Downey, Peter, Moon, Bongki
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds