Return to search

Flow Induced Noise from Turbulent Flow over Steps and Gaps

The existence of small surface discontinuities on a flow surface generate significant pressure fluctuations which can manifest as radiated far field sound and affect the fluctuating near wall pressure field exerted on the flow surface. A significant amount of research has been performed on various step and gap flows; however few have dealt with step heights that are small relative to the incoming boundary layer. Fewer still have been concerned with measuring the effect on the fluctuating wall pressure field or the radiated far field sound from these small surface discontinuities. This study presents the work aimed at scaling the radiated sound from small forward and backward steps, detailing the surface pressure field as a result of these steps, and detailing the far field sound radiated from gap configurations of similar dimension. These measurements were performed in the Virginia Tech Anechoic Wall Jet facility for step heights that ranged from approximately 10% to 100% of the incoming boundary layer height. The results show the influence of step height and boundary layer velocity on the far field sound from forward and backward steps. Very little directivity is seen for either source and the larger step heights considered in this study are shown to not be acoustically compact. A new mixed scaling normalization is proposed for the far field spectra from both types of step, which is shown to reliably collapse the data. Backward steps are shown to be much weaker producers of far field sound than a similarly sized forward step. The implications of this behavior are discussed with respect to the far field sound measured from various gap flows. The fluctuating wall pressure field was measured upstream and downstream of both step configurations. The data shows a slow recovery of the wall pressure field with lasting disturbances up to 100 step heights downstream of the step feature. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/32926
Date26 May 2010
CreatorsCatlett, Matthew Ryan
ContributorsAerospace and Ocean Engineering, Devenport, William J., Glegg, Stewart A. L., Simpson, Roger L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationCatlett_MR_T_2010.pdf

Page generated in 0.269 seconds