Von der Natur geschaffene Polymere faszinieren Polymerforscher durch ihre spezielle auf eine bestimmte Aufgabe ausgerichtete Funktionalität. Diese ergibt sich aus ihrer Bausteinabfolge uber die Ausbildung von Uberstrukturen. Dazu zählen zum Beispiel Proteine (Eiweiße), aus deren Gestalt sich wichtige Eigenschaften ergeben. Diese Struktureigenschaftsbeziehung gilt ebenso für funktionelle synthetische Makromoleküle. Demzufolge kann die Kontrolle der Monomersequenz in Polymeren bedeutend für die resultierende Form des Polymermoleküls sein.
Obwohl die Synthese von synthetischen Polymeren mit der Komplexität und der Größe von Proteinen in absehbarer Zeit wahrscheinlich nicht gelingen wird, können wir von der Natur lernen, um neuartige Polymermaterialien mit definierten Strukturen (Sequenzen) zu synthetisieren. Deshalb ist die Entwicklung neuer und besserer Techniken zur Strukturkontrolle von großem Interesse für die Synthese von Makromolekülen, die perfekt auf ihre Funktion zugeschnitten sind.
Im Gegensatz zu der Anzahl fortgeschrittener Synthesestrategien zum Design aus- gefallener Polymerarchitekturen – wie zum Beispiel Sterne oder baumartige Polymere (Dendrimere) – gibt es vergleichsweise wenig Ansätze zur echten Sequenzkontrolle in synthetischen Polymeren. Diese Arbeit stellt zwei unterschiedliche Techniken vor, mit denen die Monomersequenz innerhalb eines Polymers kontrolliert werden kann.
Gerade bei den großtechnisch bedeutsamen radikalischen Polymerisationen ist die Sequenzkontrolle schwierig, weil die chemischen Bausteine (Monomere) sehr reaktiv sind. Im ersten Teil dieser Arbeit werden die Eigenschaften zweier Monomere (Styrol und N-substituiertes Maleinimid) geschickt ausgenutzt, um in eine Styrolkette definierte und lokal scharf abgegrenzte Funktionssequenzen einzubauen. Uber eine kontrollierte radikalische Polymerisationsmethode (ATRP) wurden in einer Ein-Topf-Synthese über das N-substituierte Maleinimid chemische Funktionen an einer beliebigen Stelle der Polystyrolkette eingebaut. Es gelang ebenfalls, vier unterschiedliche Funktionen in einer vorgegebenen Sequenz in die Polymerkette einzubauen. Diese Technik wurde an zwanzig verschiedenen N-substituierten Maleinimiden getestet, die meisten konnten erfolgreich in die Polymerkette integriert werden.
In dem zweiten in dieser Arbeit vorgestellten Ansatz zur Sequenzkontrolle, wurde der schrittweise Aufbau eines Oligomers aus hydrophoben und hydrophilen Segmenten (ω-Alkin-Carbonsäure bzw. α-Amin-ω-Azid-Oligoethylenglycol) an einem löslichen Polymerträger durchgeführt. Das Oligomer konnte durch die geschickte Auswahl der Verknüpfungsreaktionen ohne Schutzgruppenstrategie synthetisiert werden. Der lösliche Polymerträger aus Polystyrol wurde mittels ATRP selbst synthetisiert. Dazu wurde ein Startreagenz (Initiator) entwickelt, das in der Mitte einen säurelabilen Linker, auf der einen Seite die initiierende Einheit und auf der anderen die Ankergruppe für die Anbindung des ersten Segments trägt. Der lösliche Polymerträger ermöglichte einerseits die schrittweise Synthese in Lösung. Andererseits konnten überschüssige Reagenzien und Nebenprodukte zwischen den Reaktionsschritten durch Fällung in einem Nicht-Lösungsmittel einfach abgetrennt werden. Der Linker ermöglichte die Abtrennung des Oligomers aus jeweils drei hydrophoben und hydrophilen Einheiten nach der Synthese. / Polymer scientists are impressed by polymers created by nature. This is caused by their structure which is aimed to fulfill very special functions. The structure is primary built by sequential covalent linking of building units. Secondly, supramolecular aggregation leads to three-dimensional alignment. The sequence of the building blocks has a high influence on the higher molecular arrangement. Proteins are only one example for supramolecular structures which have special functions because of their supramolecular arrangement. This structure-property relationship is also possible for synthetic polymers. For this reason the control of monomer sequences in synthtic polymers is just as important for the resulting structure of a synthetic polymer molecule.
Even though the synthesis of polymers with complex strucures and sizes as in nature is impossible in near future. But the development of new and better techniques for sequence control in synthetic polymers is of high importance to create well defined macromolecular structures which are tailor-made for their function.
In contrast to a lot of advanced synthethis strategies for the design of complex polymer architechtures (e.g. brushes, stars, or dendrimers) their are less approaches for a monomer sequence control in synthetic polymers. This work presents two different techniques for controlling the monomer sequence inside a polymer.
Especially in technologically significant radical polymerization it is difficult to control the monomer sequence because radical species are very reactive and the addition of a monomer to the radical function is not selective. The first approach makes use of the properties of two monomers (styrene and N-substituted maleimides) to add chemical funtions locally inside a polystyrene chain. By addition of N-functionalized maleimides during the polymerization of styrene chemical functions could be added at any desired position inside the polystyrene chain. This technique was tested on 20 different N-substituted maleimides. Most of them were incorporated successfully into the polymer chain.
The second monomer sequence control approach is a stepwise synthesis of an oligomer made of short alternating hydrophobic and hydrophilic segments on a soluble polymer support. Two building blocks were used: ω-alkyne carboxylic acid (A-B) and α-amine-ω-azide oligoethylene glycol (C-D). The linking of the segments was done by applying two very efficient chemical reactions, namely 1,3-dipolar cycloaddition of terminal alkynes (A) and azides (D) and amidification of carboxylic acids (B) with primary amines (C). These two reactions proceed chemoselectively in an ABCD multifunctional mixture without a protection chemistry strategy.
The polystyrene support was synthesized by atom transfer radical polymerization (ATRP) in the presence of an azido-functionalized ATRP initiator containing a labile p-alkoxybenzyl ester linker. Depending on the choise of solvent, the soluble polymer support was used in solution during the coupling reactions or was precipitated for an easy removal of excessive reagents and by-products. The acid-labile linker could be cleaved by trifluoroacetic acid treatment to obtain a hydrophilic/hydrophobic block copolymer.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:5138 |
Date | January 2011 |
Creators | Pfeifer, Sebastian |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Chemie |
Source Sets | Potsdam University |
Language | German |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.0018 seconds