Return to search

Coliphage Reduction by Three Wastewater Treatment Trains Utilizing the Bardenpho Process

Wastewater reuse, reclamation and recycling may provide beneficial strategies to manage limited water resources. However, insufficient treatment of municipal wastewater poses potential risk to environmental and public health regarding incidences of viral pathogens. The reduction of pathogenic microorganisms is essential to minimize human health risk associated with the reuse of wastewater. The United States Environmental Protection Agency is reviewing the use of coliphages as a potential indicator organism of fecal contamination in recreational waters. Coliphages are viruses than infect enteric coliform bacteria, and are consistently present in domestic wastewaters. They are similar in size and shape to human enteric viruses, and are more resistant to removal by disinfection than enteric bacteria. As such, they have long been proposed as indicators of fecal pollution. However, traditional bacterial indicators (i.e. Escherichia coli) are not reliable indicators for viral pathogens. Monitoring viral pathogens and utilizing the most sufficient wastewater treatment technologies are necessary to minimize public health risk associated with exposure. It is therefore of interest to better understand the removal of coliphages by sewage treatment processes.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/626726
Date January 2017
CreatorsWassimi, Alexander, Wassimi, Alexander
ContributorsPepper, Ian L., Pepper, Ian L., Gerba, Charles P., Bright, Kelly R.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0021 seconds