Aerated treatment wetlands are an increasingly recognized nature–based technology for thetreatment of domestic and industrial wastewater. As biodegradation is the most importanttreatment mechanism in aerated wetlands, these systems heavily rely on mechanical aerationmediated oxygen transfer to supply the dissolved oxygen demand of the associated microbialcommunity. In the last decade, research on aerated wetlands has evolved, however, majorquestions on aeration, the associated oxygen transfer and the quantitative link to treatmentperformance still remain unknown. Answering these questions can further improve aeratedwetland design to optimize treatment efficacy and economical efficiency.
This dissertation investigated the link of oxygen transfer to the air flow rate of aerationand elucidated the associated impact on treatment performance for organic carbon and nitrogenin horizontal flow aerated wetlands. Therefore, a numerical process model includingone dimensional reactive transport was developed. This model describes the main processesinvolved in horizontal flow aerated wetlands: water flow, heat transport, transport of solubleand particulate wastewater pollutants, biodegradation by a network of bacterial communitiesand oxygen transfer through mechanical aeration. For model calibration and validation, pilot–scale experiments in horizontal flow aerated wetlands treating real wastewater were conducted.These included conservative tracer experiments as well as monitoring steady–state operationat variable air flow rates and aeration interruption.
In general, the model was able to simulate conservative tracer transport as well as treatmentperformance for organic carbon and nitrogen at steady–state operation and aeration interruptionwith sufficient accuracy. A local sensitivity analysis of the calibrated parameters revealedporosity, hydraulic permeability and dispersion length as well as the oxygen transfer coefficientkLa as most important. When operating the wetland systems at steady–state, aeration provideda mostly aerobe environment, except at the influent zone. However, when aeration wasinterrupted, anaerobe process started to take over and treatment performance declined within3–4 days. The modeling elucidated that methanogenic and sulphate reducing bacteria can playa significant role for organic carbon removal during aeration interruption. Moreover, the modelrevealed a non–linear declining relationship of the air flow rate with oxygen transfer coefficientkLa and of kLa with treatment performance. The alteration of oxygen transfer by wastewaterpollutant concentration was then investigated in a laboratory–scale column experiment. Basedon this experiment, an empirical equation describing the inhibitory effect of soluble chemicaloxygen demand (CODs) on the oxygen transfer coefficient kLa was derived and incorporatedinto the process model. With the extended model several simulation scenarios were analyzedto quantify the impact of the inhibited oxygen transfer on treatment performance. It turnedout that the reduction of oxygen transfer by CODs will, most likely, be relevant only at highinfluent wastewater strength (CODs 300 mg L-1), low aeration (air flow rate 50 L m-2h-1) or when the aerated wetland design includes zoned aeration. With respect to secondarytreatment of domestic effluents at similar strength using a spatially uniform aeration, an airflow rate of approximately 150–200 L m-2 h-1 can be recommended as a reasonable compromisebetween treatment efficiency and robustness. If zoned aeration is intended (e.g. to create a redox zonation), however, the air flow rate should be increased to approximately 400 L m-2 h-1 to supress the inhibition of oxygen transfer by CODs concentration. Furthermore, the air flow rate at steady–state operation (50–500 L m-2 h-1) did not substantially affect the response in effluent concentrations for organic carbon and nitrogen. This means that at steady–state air flow rates of 50–500 L m-2 h-1 operation, treatment efficacy during aeration interruption will deteriorate and recover in a similar time.
In conclusion, this dissertation provides quantitative insights into the mechanisms of aeration and treatment performance for organic carbon and nitrogen in horizontal flow aerated treatment wetlands. The findings obtained can support aerated treatment wetland design for research experiments and engineering applications. Therefore, this dissertation represents a significant advancement in the field of aerated treatment wetland research.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:38715 |
Date | 12 March 2020 |
Creators | Boog, Johannes |
Contributors | Kolditz, Olaf, Müller, Roland, Boano, Fulvio, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0014 seconds