The temporal and spatial changes in chemical and
biological properties of Lake Mead have been investigated,
thereby indicating the sources of water pollution and the
time of highest pollution potential. Planktonic organisms
have been shown to indicate the presence of water problems.
Macro- and micro-nutrient analyses have shown that primary
productivity is not inhibited by limiting concentrations.
A mathematical model has been developed, tested with one
set of independent data, and shown worthy of management
utility. Although the model works very well for the Lake
Mead area, the physical reality of the Multiple Linear
Regression equation should be tested on independent data.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/617589 |
Date | 09 1900 |
Creators | Everett, Lorne G. |
Contributors | Department of Hydrology & Water Resources, The University of Arizona |
Publisher | Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ) |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Technical Report |
Source | Provided by the Department of Hydrology and Water Resources. |
Rights | Copyright © Arizona Board of Regents |
Relation | Technical Reports on Hydrology and Water Resources, No. 13 |
Page generated in 0.0022 seconds