This thesis describes a study of two approaches to the design of water distribution networks to meet specified demands at minimum cost.
One method is based on an incremental increase technique which first examines all possible "one-size" pipe increases in the network, then based on a benefit/cost analysis a decision is made on which pipe to increase one diameter size. The second approach utilizes a computerized linear programming technique to rapidly converge on an optimal network design. Both techniques rely on the use of an effective computerized network analysis program.
It was found after studying several networks that the incremental increase technique is operational for any size of network. However, computer costs quickly become a limiting factor in the usefulness of this approach. The linear programming based technique was considerably less costly but did not prove itself to be fully capable of optimizing large networks in its present developmental state. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/20424 |
Date | January 1977 |
Creators | Smirfitt, Gary Robert |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0016 seconds