MSc. (Applied Chemistry) / Remediation of POPs particularly the chlorinated compounds in water is therefore crucial. This research work describes the modification of polyethersulfone (PES) thin-film membrane composite (TFC) with functionalised carbon nanotubes (f-CNTs) using the phase invasion method. The oxidised CNTs were successfully decorated with Zero-Valent (ZV) Fe/Ni nanoparticles for the adsorption and degradation studies of polychlorinated organic pollutants (in this case the dichlorodiphenyltrichloroethanes (DDTs)). The in situ modification procedure was carried out using different quantities (0.04 wt%, 0.1 wt% and 0.2 wt%) of Fe/Ni-f-CNTs nanohybrids dispersed in a DMAc solution and dipping the polyethersulfone powder into a suspension containing the Fe/Ni-f-CNTs to form a nano-composite membrane. The formed composite membrane characteristics were investigated with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA) and X-ray diffraction spectroscopy (XRD). The incorporation of nanohybrid in the PES membrane was found to increase the surface smoothness and the hydrophilicity of the composites. In addition, there was an increase in the adsorption of DDTs with increase in the nano-hybrid loading as indicated by the adsorption studies using the Langmuir isotherm and Freundlich isotherm studies. The data obtained from the batch studies closely fitted with the Langmuir isotherm based on the characteristic parameter RL found to lie within the standard range 0 < RL < 1 .
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:13655 |
Date | 30 June 2015 |
Creators | Thatyana, Maxwell |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Thesis |
Rights | University of Johannesburg |
Page generated in 0.0016 seconds