The study reported here was aimed at optimising the microfiltration (MF) membrane process applied to water reclamation. Polypropylene hollow fibre membrane (0.2 ??m) with high pressure backwahing was mainly used in this study. To obtain secondary effluent for microfiltration a biological treatment (UASB/SBR) was applied to brewery effluent. It was identified that loading at a rate below 14 kg COD/kLd will ensure the stable performance of UASB. An initial energy balance of the system (Biological and MF) shows a plant treating brewery effluent (4000 mg/L COD) could yield a net energy of 2.5 kWh/kL (yield from methane less the plant operating energy) at an optimised MF flux. For the MF of low solids feed it was found that crossflow has no benefit and that intermittent dead end filtration is less productive than dead-end cycles. It was also that found cycle time between air backwashes is strongly dependent on the imposed flux and the maximum TMP allowed. Analysis based on energy and capital cost indicates that if energy saving is the objective the unit needs to be operated at low imposed flux. However, if capital and energy costs are combined, cost efficient operation would be at about 60 to 70 L/m2.h for TMPmax of 20 kPa or above 80 L/m2.h for TMPmax of 50 kPa. For cycles with a TMPmax of 20 kPa, the specific cake resistance was constant over the range of imposed fluxes. However, for a TMPmax of 50 kPa the specific resistance was higher and increased with imposed flux, signifying compressible cake formation. Further analysis of the TMP profiles showed that the membrane resistance increased over a number of cycles and that the increase was higher at higher flux. To fully optimise the operation, it would be necessary to include these factors. Laboratory scale studies with yeast showed many similarities with secondary effluent filtration. However, some inconsistencies were observed at lower f1uxes, which need to be confirmed by further studies. Life cycle assessment of the membrane filtration process indicated that operating at low flux (10 Llm2.h) with higher TMPmax is the environmentally sound operational strategy. The analysis highlights the fact that the environmental impacts mainly come from the membrane operation (more than 85%). When alternative energy sources are considered, the least impact operational strategy shifts towards higher flux (in the vicinity of 30 l/m2.h). In-situ electrochemical cleaning using an electrolysis process indicated better flux recovery than traditional chemical cleaning. However, repeated cycles of fouling and cleaning showed electrochemically cleaned membranes have a higher fouling tendency than the chemically cleaned membrane. Initial characterisation of membrane surface properties after cleaning could not provide conclusive evidence for the cause of rapid fouling of the electrochemically cleaned membrane.
Identifer | oai:union.ndltd.org:ADTP/258472 |
Date | January 2008 |
Creators | Parameshwaran, Kathiravelu, Chemical Sciences & Engineering, Faculty of Engineering, UNSW |
Publisher | Awarded by:University of New South Wales. Chemical Sciences & Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Parameshwaran Kathiravelu., http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0016 seconds