Return to search

Developing Cost-Effective Specialty Adsorbents to Meet the Emerging Challenges of Pollutant Removal in Surface Water Systems

The production of clean water is emphasized under the United Nations goals for sustainable development (SDGs), enlightening the acute need of developing new sustainable technologies in all disciplines. SDGs have urged all engineers in the 21st century to mitigate pollution of drinking water sources and prevent all receiving waterbodies from the impact of agriculture discharge, wastewater effluent, and stormwater runoff. Current water matrix constituents of concern include traditional pollutants (i.e., total nitrogen and total phosphate), natural organic matters (i.e., total organic carbon (TOC), tannic acid), heavy metals (i.e., copper, calcium), and harmful algae toxins (i.e., microcystin), as well as contaminants of emerging concern (i.e., Per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, endocrine disrupting chemicals, personal care products). This study presents the most recent development of a suite of in situ cost-effective, scalable, and fit-for-purpose specialty adsorbents to simultaneously remove PFAS, TOC, total nitrogen, total phosphate, and microcystin through synergistic effect of different specialty ingredients. It is also aimed to clarify physiochemical removal mechanisms for the removal of color (tannic acid), nutrients (phosphate and nitrate), contaminants of emerging concern (PFAS) and algal toxins (Microcystin LR). The originality of these specialty adsorbents with chemical, molecular, and even microbial insights falls within the sustainable nature of specialty ingredients and wide availability tailored for scalable applications in any landscape.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2627
Date01 January 2023
CreatorsOrdonez, Diana
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0021 seconds