Return to search

Efficient particle tracking algorithms for solute transport in fracture rock with absorption and matrix diffusion

<p> In this paper, we study solute transport in an individual fracture and the surrounding porous rock. Specifically, we consider a parallel-plate model of a single fracture that allows for the diffusion of solute within the matrix and the adsorption of solute to the fracture walls. We developed two stochastic particle-tracking methods to numerically solve for the concentration of the fracture model. The first is the hi-res method which captures the solute dynamics at a micro-scale. The second algorithm we develop, the upscaled method, captures the large-scale dynamics of the system at vastly reduced computational cost. We verified the accuracy of these methods by comparing their results to numerical results from the literature. We also compared the efficiency of the developed particle tracking methods to an existing particle tracking method from the literature in the case of no interface absorption.</p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:1552070
Date08 March 2014
CreatorsKlein, Dylan Lowell
PublisherUniversity of Colorado at Boulder
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0019 seconds