Coagulation and flocculation processes are important parts of water and wastewater treatment. Coagulation or destabilization of colloidal suspensions results in aggregation of colloidal particles by physical and chemical processes. Flocculation results in the formation of larger and settleable structures by bridging.
Alginate, a polysaccharide obtained from marine brown algae, produces a gel structure when mixed with calcium ions, which is expected to be a potential coagulant in water treatment. This study aims to determine the use of calcium alginate as a potential coagulant during water treatment and determine its capabilities and deficiencies in coagulation processes.
The study was conducted on turbid water samples prepared in the laboratory and those taken from the inlet of Ankara ivedik Water Treatment Plant (IWTP) by running typical jar tests. The main experimental variables were initial alginate and calcium doses, initial turbidity of water samples and the order with which the two chemicals are dosed. The main criteria investigated to check the success of the system was the final turbidity values and the turbidity removal capacity of calcium- alginate.
Experiments were conducted on three different laboratory &ndash / prepared turbid water samples and on the raw water taken from the inlet point of Ankara ivedik Drinking Water Treatment Plant (IWTP). These were prepared as high (150 NTU) medium (80 NTU) and low (10 NTU) turbidity samples. The calcium concentrations tested varied between 30 and 200 mg/L and alginate concentrations tested varied between 0.04 to 40 mg/L.
Depending on the initial turbidity and initial calcium concentration of water sample the results depict that calcium alginate could be used as an effective coagulant for high (150 NTU) and medium (80 NTU) turbidity water sample especially at the calcium doses of 120 and 160 mg/L for low alginate concentration doses like 0.4 mg/L. The final turbidity met both the requirements of Drinking Water Standards applied in Turkey and Europe. Generally, the higher the initial turbidity was, the higher the turbidity removal efficiency achieved, even with very low alginic acid concentration. As the initial turbidity decreased, initial concentration of calcium required for the effective coagulation processes decreased. However, for low (10 NTU) turbidity water samples the system did not work properlyHowever, for low turbidity water samples, the turbidity removal efficiency decreased, and it was difficult to meet the limits.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12606531/index.pdf |
Date | 01 September 2005 |
Creators | Coruh, Hale Aylin |
Contributors | Sanin, Dilek |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0018 seconds