Return to search

An integrated approach to modelling urban water systems

The energy consumption and greenhouse gas (GHG) emissions associated with urban water systems have come under scrutiny in recent times, as a result of increasing interest in climate change, to which urban water systems are particularly vulnerable. The approach most commonly taken previously to modelling these results has been to consider various urban water system components in great detail, but in isolation from the rest of the system. This piecewise approach is suboptimal, since it systematically fails to reveal the relative importance of the energy consumption and GHG emissions associated with each system component in the context of the entire urban water system. Hence, it was determined that a new approach to modelling the energy consumption and GHG emissions associated with urban water systems was necessary. It was further determined that the value derived from such a model would be greatly enhanced if it could also model the water consumption and wastewater generation associated with each system component, such that integrated policies could be developed, aimed at minimising water consumption, wastewater generation, energy consumption and GHG emissions concurrently. Hence, the following research question was posed: How should the relationships between the water consumption, wastewater generation, energy consumption and GHG emissions associated with the operation of urban water systems be modelled such that the impact of various changes to the system configuration made at different spatial scales can be determined within the context of the entire system? In this research project, life cycle assessment ideas were employed to develop such a new modelling methodology. Initially, the approach was developed at the building-scale, such that the end uses of water present in a selected building and any associated appliances could be modelled, along with the fraction of the citywide water supply and wastewater systems directly associated with providing services to that building. This vast breadth of scope was delivered by considering only the operational life cycle stage of each urban water system component, excluding both the pre- and post-operational life cycle stages of the associated infrastructure. The value of this pilot model was illustrated by several case studies, focused on residential buildings connected to the centralised water supply and wastewater systems in Melbourne, Australia. Later, the approach was extended to the city-scale by using probabilistic distributions of each input parameter, such that all of the end uses of water present in a city, and all of the associated building-scale appliances could be modelled, along with the associated complete water supply and wastewater systems. The value of this city-scale model was illustrated by applying it to model a hypothetical case study city, resembling Melbourne, Australia in many ways. Due to a lack of data, this application was limited to the residential sector of the case study city, along with the fraction of the citywide water supply and wastewater systems directly associated with providing services to that sector. The results generated by the pilot and city-scale models showed that the new modelling methodology could be employed at a wide range of scales to assess the relative importance of each modelled urban water system component in terms of the specified results. Importantly, the high resolution of those results enabled the identification of the underlying causes of the relative importance of each urban water system component, such that efficient and effective approaches to reducing each result for each system component could be developed. Interestingly, for the specific case studies investigated, it was revealed that some commonly neglected system components were actually extremely important, such as domestic hot water services, a trend found to be largely driven by hot water consumption in showers.

Identiferoai:union.ndltd.org:ADTP/234906
Date January 2009
CreatorsFlower, David Jonathan Mark
PublisherMonash University. Faculty of Engineering. Department of Civil Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsOpen Access: eThesis may be made available for publication online immediately., This thesis is protected by copyright. Copyright in the thesis remains with the author. The Monash University Arrow Repository has a non-exclusive licence to publish and communicate this thesis online.

Page generated in 0.0018 seconds