Effect of ionic strength on the efficiency of heavy metal removal and recovery from aqueous solutions via continuous mode polymer enhanced ultrafiltration (PEUF) method was examined. Application of PEUF to divalent ions of cadmium, nickel and zinc after their prior linking with polyethylenimine (PEI) results in complete removal of metal ions from single component aqueous solutions at high pHs.
Binding ability and hence the extent of metal retention in high ionic strength medium exhibits differences between solutions containing single and multicomponent metal mixtures. In single component metal solutions, extent of retention decreases but
binding order of metals remains unaffected both in low and high ionic strength medium. But, in binary component metal mixtures, with increase in ionic strength the binding order of metals changes. Fractional separation of Cd, Ni and Zn ions from equimolar binary and ternary mixtures of these metals and effect of ionic strength on fractional separation efficiency
were investigated. Depending on pH and salt concentration and metal pairs present in the solution fractional separation can be achieved.Dynamic and static light scattering experiments were performed in order to gain insight about the conformational changes in PEI structure due to the pH and ionic strength alternations in solution. It was found that, the increase in ionic strength reduces the size of the macromolecules.
A chemical equilibrium model was developed in order to estimate the apparent binding constants of metal-PEI complexes. Based on the data obtained from continuous and batch mode PEUF experiments apparent binding constants were estimated and compared to reveal the performance differences between these operational modes.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12607832/index.pdf |
Date | 01 November 2006 |
Creators | Islamoglu, Sezin |
Contributors | Yilmaz, Levent |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.1794 seconds