A water sample concentrator utilizing a membrane adsorption/elutriation procedure for bacterial recovery was developed and field-tested. Influent sample volumes of 19.0 liters were processed by the concentrator within 10 minutes. Standard MPN and membrane filtration tests were conducted to determine the efficiency of the concentrator. In laboratory experiments, an average bacterial recovery of 48 percent was accomplished when E. Coli was the bacterium concentrated. An average recovery of 78 percent was achieved with Streptococcus faecalis. Various commercially available 142 mm diameter membrane filters were tested with the concentrator. Millipore membrane filters having a porosity of 0.45 m were found to be superior to Cox membrane filters with 0.45 and 5.0 m porosities and to zeta plus filters. The most promising technique for eluting bacteria from the membrane filter appeared to consist of mixing the filter and 125 mL of three percent bovine serum solution at pH 9.0 in an electric blender for 30 seconds and then allowing 15 minutes of contact.
Miscellaneous experiments investigated the addition of multivalent cations to enhance adsorption of bacteria to the membrane filters, the use of vacuum induced flow through the concentrator and the possibility of monitoring bacterial levels through adenosine triphosphate analysis. In the field trials, the water sample concentrator detected coliform bacteria in drinking water in which no coliforms were detected in grab samples by the standard MPN method. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/87162 |
Date | January 1982 |
Creators | Daugherty, James Michael |
Contributors | Sanitary Engineering |
Publisher | Virginia Polytechnic Institute and State University |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Thesis, Text |
Format | viii, 81, [2] leaves, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 9503114 |
Page generated in 0.0019 seconds