Algal blooms plague freshwaters across the globe, as increased nutrient loads lead to eutrophication of inland waters and the presence of potentially harmful cyanobacteria. In this context, remote sensing is a valuable approach to monitor water quality over broad temporal and spatial scales. However, there remain several challenges to the accurate retrieval of water quality parameters, and the research in this thesis investigates these in an optically complex lake (Lake Balaton, Hungary). This study found that bulk and specific inherent optical properties [(S)IOPs] showed significant spatial variability over the trophic gradient in Lake Balaton. The relationships between (S)IOPs and biogeochemical parameters differed from those reported in ocean and coastal waters due to the high proportion of particulate inorganic matter (PIM). Furthermore, wind-driven resuspension of mineral sediments attributed a high proportion of total attenuation to particulate scattering and increased the mean refractive index (n̅p) of the particle assemblage. Phytoplankton pigment concentrations [chlorophyll-a (Chl-a) and phycocyanin (PC)] were also accurately retrieved from a times series of satellite data over Lake Balaton using semi-analytical algorithms. Conincident (S)IOP data allowed for investigation of the errors within these algorithms, indicating overestimation of phytoplankton absorption [aph(665)] and underestimation of the Chl-a specific absorption coefficient [a*ph(665)]. Finally, Chl-a concentrations were accurately retrieved in a multiscale remote sensing study using the Normalized Difference Chlorophyll Index (NDCI), indicating hyperspectral data is not necessary to retrieve accurate pigment concentrations but does capture the subtle heterogeneity of phytoplankton spatial distribution. The results of this thesis provide a positive outlook for the future of inland water remote sensing, particularly in light of contemporary satellite instruments with continued or improved radiometric, spectral, spatial and temporal coverage. Furthermore, the value of coincident (S)IOP data is highlighted and contributes towards the improvement of remote sensing pigment retrieval in optically complex waters.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:698504 |
Date | January 2016 |
Creators | Riddick, Caitlin A. L. |
Contributors | Tyler, Andrew N. ; Hunter, Peter D. |
Publisher | University of Stirling |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1893/24417 |
Page generated in 0.0024 seconds