Since 1912 concentrations of the major anions and cations (except calcium) in Bear Lake water have shown a steady decrease which has been attributed to a dilution of Bear Lake by Bear River water, Bear Lake having been used as a reservoir for Bear River water since 1918. This study examined the changes which have occurred in Bear Lake water chemistry since 1912 and tested the validity of the dilution theory.
Simple water and salinity budgets were determined for the Bear Lake system and used to simulate the effect of Bear River storage patterns since 1918 on the concentrations of sodium, potassium, magnesium, chloride, and sulfate in Bear Lake. Comparison of predicted concentrations with observed concentrations indicates that the dilution theory is a valid one.
Field studies were conducted during the spring, summer, and fall of 1971 to describe the distribution of the major ions in Bear Lake with respect to space and time. No significant differences were found between samples collected at different depths and location on the north-south axis of the lake on any one day, but differences were found between sampling days over the course of the study period.
A pattern of rapid changes in the concentrations of sodium ions in Bear Lake water was observed in the data from this investigation and noticed also in the data from an investigation conducted in 1959. Adsorption of sodium ions to aragonite crystals precipitating within the lake and/or clay minerals introduced with Bear River inflow is suggested as the cause of these fluctuations in sodium levels.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-5125 |
Date | 01 May 1972 |
Creators | Nunan, Robert L. |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). |
Page generated in 0.0025 seconds