Return to search

Treatment of pentachlorophenol (PCP) by integrating biosorption and photocatalytic oxidation.

by Chan Shuk Mei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 138-149). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstracts --- p.ii / Contents --- p.vi / List of figures --- p.xi / List of plates --- p.xiv / List of tables --- p.xv / Abbreviations --- p.xvi / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Pentachlorophenol --- p.1 / Chapter 1.1.1 --- Characteristics of pentachlorophenol --- p.1 / Chapter 1.1.2 --- Application of pentachlorophenol --- p.4 / Chapter 1.1.3 --- The fate of pentachlorophenol in environment --- p.5 / Chapter 1.1.4 --- The toxicity of pentachlorophenol --- p.9 / Chapter 1.1.5 --- Remediation of pentachlorophenol --- p.13 / Chapter 1.1.5.1 --- Physical treatment / Chapter 1.1.5.2 --- Chemical treatment / Chapter 1.1.5.3 --- Biological treatment / Chapter 1.1.5.4 --- Alternative for combining two treatments / Chapter 1.2 --- Biosorbents --- p.18 / Chapter 1.2.1 --- Chitin and chitosan --- p.21 / Chapter 1.2.1.1 --- History of chitin and chitosan --- p.21 / Chapter 1.2.1.2 --- Structures of chitin and chitosan --- p.21 / Chapter 1.2.1.3 --- Sources of chitin and chitosan --- p.23 / Chapter 1.2.1.4 --- Application of chitin and chitosan --- p.26 / Chapter 1.2.1.5 --- Study on PCP removal by chitinous material --- p.28 / Chapter 1.2.2 --- Factors affecting biosorption --- p.29 / Chapter 1.2.2.1 --- Solution pH --- p.29 / Chapter 1.2.2.2 --- Concentration of biosorbent --- p.30 / Chapter 1.2.2.3 --- Retention time --- p.31 / Chapter 1.2.2.4 --- Temperature --- p.32 / Chapter 1.2.2.5 --- Agitation rate --- p.32 / Chapter 1.2.2.6 --- Initial sorbate concentration --- p.33 / Chapter 1.2.3 --- Modeling of biosorption --- p.33 / Chapter 1.2.3.1 --- Langmuir adsorption model --- p.34 / Chapter 1.2.3.2 --- Freundlich adsorption model --- p.34 / Chapter 1.3 --- Photocatalytic degradation --- p.35 / Chapter 1.3.1 --- Titanium dioxide --- p.36 / Chapter 1.3.2 --- Mechanism of photocatalytic oxidation using photocatalyst TiO2 --- p.36 / Chapter 1.3.3 --- Advantages of photocatalytic oxidation with Ti02 and H2O2 --- p.41 / Chapter 1.3.4 --- Degradation of PCP by photocatalytic oxidation --- p.41 / Chapter 2. --- Objectives --- p.45 / Chapter 3. --- Materials and methods --- p.46 / Chapter 3.1 --- Biosorbents --- p.46 / Chapter 3.1.1 --- Production of biosorbents --- p.46 / Chapter 3.1.2 --- Scanning electron microscope of biosorbents --- p.48 / Chapter 3.1.3 --- Pretreatment of biosorbents --- p.48 / Chapter 3.2 --- Pentachlorophenol preparation --- p.48 / Chapter 3.3 --- Batch biosorption experiment --- p.48 / Chapter 3.3.1 --- Quantification of pentachlorophenol by HPLC --- p.51 / Chapter 3.3.2 --- Data analysis for biosorption --- p.51 / Chapter 3.3.3 --- Selection of optimal conditions for batch PCP adsorption --- p.52 / Chapter 3.3.3.1 --- Effect of initial pH and biosorbent concentration --- p.52 / Chapter 3.3.3.2 --- Improvement on pH effect and biosorbent concentration --- p.52 / Chapter 3.3.3.3 --- Effect of temperature --- p.53 / Chapter 3.3.3.4 --- Effect of agitation rate --- p.53 / Chapter 3.3.4 --- Effect of initial PCP concentration and biosorbent concentration --- p.53 / Chapter 3.3.4.1 --- Adsorption isotherm --- p.54 / Chapter 3.4 --- Photocatalytic oxidation --- p.54 / Chapter 3.4.1 --- Reaction mixture solution --- p.54 / Chapter 3.4.2 --- Photocatalytic reactor --- p.55 / Chapter 3.4.3 --- Batch photocatalytic oxidation system --- p.55 / Chapter 3.4.4 --- Selection of extraction solvent --- p.59 / Chapter 3.4.5 --- Extraction efficiency --- p.59 / Chapter 3.4.6 --- Data analysis for PCO --- p.60 / Chapter 3.4.7 --- Irradiation time --- p.60 / Chapter 3.4.8 --- Determination of hydrogen peroxide concentration --- p.61 / Chapter 3.4.9 --- Effect of biosorbent concentration in PCO --- p.61 / Chapter 3.4.10 --- Effect of PCP amount on biosorbent in PCO --- p.61 / Chapter 3.4.11 --- Determination of chloride ion concentration and total organic carbon during PCO --- p.62 / Chapter 3.4.12 --- Identification the intermediates of PCP degradation by PCO --- p.62 / Chapter 3.4.13 --- Evaluation of the change of PCO treated biosorbents --- p.63 / Chapter 3.4.13.1 --- Chitin assay --- p.64 / Chapter 3.4.13.2 --- Diffuse reflectance Fourier transform infra-red spectroscopy --- p.64 / Chapter 3.4.13.3 --- Protein assay --- p.66 / Chapter 3.4.13.4 --- Biosorption efficiency --- p.66 / Chapter 3.4.14 --- Multiple biosorption and PCO cycles of PCP --- p.66 / Chapter 3.4.15 --- Evaluation for the toxicity change of PCP adsorbed biosorbents during PCO --- p.67 / Chapter 4. --- Results --- p.68 / Chapter 4.1 --- Batch biosorption experiment --- p.68 / Chapter 4.1.1 --- Selection of optimal conditions for batch PCP adsorption --- p.68 / Chapter 4.1.1.1 --- Effect of initial pH and biosorbent concentration --- p.68 / Chapter 4.1.1.2 --- Effect of Tris buffer and biosorbent concentrations --- p.73 / Chapter 4.1.1.3 --- Effect of temperature --- p.73 / Chapter 4.1.1.4 --- Effect of agitation rate --- p.73 / Chapter 4.1.2 --- Effect of initial PCP concentration and biosorbent concentration --- p.81 / Chapter 4.1.2.1 --- Adsorption isotherm --- p.82 / Chapter 4.2 --- Photocatalytic oxidation --- p.88 / Chapter 4.2.1 --- Selection of extraction solvent --- p.88 / Chapter 4.2.2 --- Determination of hydrogen peroxide concentration --- p.88 / Chapter 4.2.3 --- Effect of biosorbent concentration in PCO --- p.88 / Chapter 4.2.4 --- Effect of PCP amount on biosorbent in PCO --- p.94 / Chapter 4.2.5 --- Determination of chloride ion concentration and total organic carbon during PCO --- p.98 / Chapter 4.2.6 --- Identification the intermediates of PCP degradation by PCO --- p.102 / Chapter 4.2.7 --- Evaluation of the change of PCO treated biosorbents --- p.102 / Chapter 4.2.7.1 --- Chitin assay --- p.102 / Chapter 4.2.7.2 --- Diffuse reflectance Fourier transform infra-red spectroscopy --- p.102 / Chapter 4.2.7.3 --- Protein assay --- p.102 / Chapter 4.2.7.4 --- Biosorption efficiency --- p.109 / Chapter 4.2.8 --- Multiple biosorption and PCO cycles of PCP --- p.109 / Chapter 4.2.9 --- Evaluation for the toxicity change of PCP adsorbed biosorbents during PCO --- p.109 / Chapter 5. --- Discussion --- p.115 / Chapter 5.1 --- Batch biosorption experiment --- p.115 / Chapter 5.1.1 --- Selection of optimal conditions for batch PCP adsorption --- p.115 / Chapter 5.1.1.1 --- Effect of initial pH --- p.115 / Chapter 5.1.1.2 --- Effect of Tris buffer and biosorbent concentrations --- p.118 / Chapter 5.1.1.3 --- Retention time --- p.119 / Chapter 5.1.1.4 --- Effect of temperature --- p.120 / Chapter 5.1.1.5 --- Effect of agitation rate --- p.121 / Chapter 5.1.2 --- Effect of initial PCP concentration and biosorbent concentration --- p.121 / Chapter 5.1.2.1 --- Modeling of biosorption --- p.122 / Chapter 5.2 --- Photocatalytic oxidation --- p.123 / Chapter 5.2.1 --- Selection of extraction solvent --- p.124 / Chapter 5.2.2 --- Determination of hydrogen peroxide concentration --- p.124 / Chapter 5.2.3 --- Effect of biosorbent concentration in PCO --- p.125 / Chapter 5.2.4 --- Effect of PCP amount on biosorbent in PCO --- p.127 / Chapter 5.2.5 --- Determination of chloride ion concentration and total organic carbon during PCO --- p.127 / Chapter 5.2.6 --- Identification the intermediates of PCP degradation by PCO --- p.128 / Chapter 5.2.7 --- Evaluation of the change of PCO treated biosorbents --- p.128 / Chapter 5.2.7.1 --- Chitin assay --- p.129 / Chapter 5.2.7.2 --- Diffuse reflectance Fourier transform infra-red spectroscopy --- p.129 / Chapter 5.2.7.3 --- Protein assay --- p.131 / Chapter 5.2.7.4 --- Biosorption efficiency --- p.131 / Chapter 5.2.8 --- Multiple biosorption and PCO cycles of PCP --- p.132 / Chapter 5.2.9 --- Evaluation for the toxicity change of PCP adsorbed biosorbents during PCO --- p.132 / Chapter 6. --- Conclusion --- p.134 / Chapter 7. --- Recommendation --- p.137 / Chapter 8. --- References --- p.138

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323817
Date January 2002
ContributorsChan, Shuk Mei., Chinese University of Hong Kong Graduate School. Division of Biology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xix, 149 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0032 seconds