Return to search

Metal Oxide-based Heteronanostructure for Efficient Solar Water Splitting

Thesis advisor: Dunwei Wang / Solar water splitting refers to the reaction that converts solar energy into chemical fuel. It is an attractive means to store solar energy. This process, analogous to nature photosynthesis, uses semiconductor to capture and convert solar irradiation and, as such, is called artificial photosynthesis. Despite its promising prospect, the lack of materials that can satisfy all requirements to achieve efficient solar water splitting becomes an important challenge. In this thesis, we aim to develop a strategy of forming heteronanostructure to tackle the challenge faced by metal oxide-based photoanode for water oxidation. The challenge associated with metal oxide-based photoanodes and current approach to alleviate the challenge is first discussed. We propose a strategy of combining multiple components to form heteronanostructure to meet the challenges, in particular the charge transport issue. By introducing a dedicated charge transporter, we fabricate various heteronanostructure including TiO₂/TiSi₂, Fe₂O₃/TiSi₂ and Fe₂O₃/AZO nanotubes to improve the charge collection and therefore overall efficiency. Additionally, the growth of several important metal oxides by atomic layer deposition is developed and its utilization as photoanode for water splitting is studied for the first time. Because this strategy is based on the rational design and synthesis of materials, it has the potential to produce electrodes with a combination of properties that have not been exhibited simultaneously by single-component materials. In addition, the strategy is highly versatile and can incorporate the latest developments produced by parallel efforts. We are confident that the rational design and synthesis of materials such as the strategy proposed here will play an increasingly more important role in energy research. / Thesis (PhD) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_101885
Date January 2012
CreatorsLin, Yongjing
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0023 seconds