Return to search

Initial effects of clearcutting on the flow of chemicals through a forest-watershed ecosystem in south-western British Columbia

A literature survey indicated that little was known about the effects of commercial clearcutting on stream and watershed solution chemistry. To investigate these effects, five small watersheds were studied in the University of B.C. Research Forest. Three of the watersheds were equiped with weirs, stream height recorders, and soil-air-water thermographs. Soil pits were dug in the three calibrated watersheds and equiped with surface runoff collectors and hanging water column tension lysimeters. Samples of - precipitation above the forest, throughfall (through forest and slash), surface runoff, forest floor leachate, mineral soil leachate near the bottom of the rooting zone, groundwater, and streamwater - were collected at regular intervals and analyzed for pH, electrical conductivity, alkalinity as bicarbonate, K, Na, Mg, Ca, Fe, Mn, Al, Cl, P, N, S, and Si for periods of up to three years prior to clear-cutting and two years after clearcutting. Streamwater was also analyzed for dissolved oxygen and suspended sediment. Sampling was carried out for periods of up to three years prior to clearcutting and up to two years following clear-cutting.
The streams were characterized by high discharges from late autumn until early summer and low discharges from May until October, with almost no contribution from snowmelt runoff. Response to precipitation was fairly rapid and it was hypothesized that stormflow arose mainly from flow of water through macrochannels in the soil. Visual observations and chemical data were consistent with this hypothesis.
Evapotranspiration from the gauged watersheds was estimated to be about 85 cm per year by subtracting streamflow outputs from precipitation inputs and 65 cm per year using theoretical methods. The discrepancy between these two values was attributed to an unmeasured leakage of water, particularly from the untreated control watershed which rendered too low the streamflow outputs. There was an increase of 30.8 cm in runoff from one watershed, and 27.6 cm from another during the first six months of the dormant season immediately following clearcutting. During this period runoff from the control watershed was 141.5 cm.
Stream temperatures underwent annual cycles with winter minima close to 0°C and summer maxima close to 17°C. Diurnal temperature fluctuations were slight and usually less than a few degrees. Clearcutting caused an increase in both maximum and minimum stream temperatures during the first dormant season following clearcutting.
The few measurements which were made of suspended sediment, together with visual observations, indicated that concentrations were usually negligible in the streams.
Dissolved oxygen concentrations in streams were usually close to 100% saturation and underwent annual cycles with maximum values in winter and minimum values in late summer and early autumn. Clearcutting had little effect on dissolved oxygen values during the cooler wetter months but caused very pronounced decreases during summer and early autumn. This was attributed to the biological and chemical oxygen demands of decaying slash in the streams.
Stream chemistry exhibited little diurnal variation but considerable variation with discharge. Sodium, calcium, magnesium, dissolved silica, and bicarbonate concentrations, and electrical conductivity and pH decreased with increasing discharge, whereas potassium and nitrate concentrations exhibited some increases and some decreases. Chloride and sulphate concentrations were generally not significantly related to discharge.
In the undisturbed ecosystems, chemical concentrations, pH, and electrical conductivity throughout the systems were generally highest in late summer and early autumn and lowest in winter and early spring. This was attributed to seasonal cycles of geological and biological activity with accumulation of weathering and decomposition products occurring during dry, warm summers. These were flushed through the system in autumn, with solutions becoming progressively more dilute throughout the winter until the onset of warmer weather. Nitrate concentrations tended to be higher in winter than in summer which was attributed to greater nitrogen uptake by organisms in summer.
The most abundant ions in precipitation and throughfall were hydrogen, sulphate, and chloride, while calcium, bicarbonate, and sulphate were dominant in all the other types of water samples. There was a general increase in chemical concentrations to maximum values in forest floor leachate followed by a decrease to minimum values in groundwater, and a slight increase again in streamwater. The lowest pH values were in throughfall (4.0-4.5) followed by a steady increase through the system to maximum values in stream-water (6.5-7.0).
Clearcutting increased the pH of water reaching the forest floor and surface runoff but decreased the pH of mineral soil leachate, groundwater, and streamwater. It generally decreased chemical concentrations in water reaching the forest floor and in surface runoff, and, to a lesser extent, in forest floor and mineral soil leachates, but it increased concentrations in groundwater and, to a lesser extent, in streamwater. A most notable increase throughout the system was in the concentration of potassium which was attributed to the relative ease with which potassium is leached from decaying vegetation. Increases in nitrate concentrations were particularly high in groundwater.
Streamwater concentrations of potassium, iron, calcium, dissolved oxygen, and probably manganese, were significantly affected by clearcutting; concentrations of all these chemicals increased, except dissolved oxygen which decreased. Slight increases in magnesium, nitrate, sulphate, and chloride concentrations, and electrical conductivity, and decreases in pH and bicarbonate concentrations were also observed. All changes were most noticeable during the low flow periods of late summer and early autumn. There were no obvious effects on sodium, aluminium, ammonium, dissolved silica, and phosphate concentrations.
In terms of chemical budgets, there was a general net loss of calcium, sodium, magnesium, potassium, and sulphur from all the watersheds, in their undisturbed state, while nitrogen was accumulated and phosphorus underwent very little change. The chloride balance changed from year to year with losses one year and gains the next. Chemical outputs increased relative to inputs with increasing precipitation so that net losses were greater in winter than in summer.
Chemical budgets and stream chemistry at Haney were compared to the results of other studies, particularly one in the nearby Seymour watershed (Zeman, 1973).
At Haney, clearcutting significantly increased potassium losses and decreased nitrogen gains in one watershed and significantly increased potassium, sodium, magnesium, and chloride losses in another watershed.
From the nutrient viewpoint, it appears that clearcutting has not impaired the mechanisms for nutrient retention in the ecosystems of the type present in the study area. This may not be the case for all ecosystems in coastal B.C., or for other forestry practices, such as slashburning.
The study has pointed out the need for further work to quantify the role of macrochannels in soils with respect to hydrologic and chemical behaviour of watersheds. It has also pointed out the danger of extrapolating to larger ecosystems the results of lysimeter studies. Chemical analysis of groundwater may offer a more accurate means of estimating chemical losses from soils than do lysimeters. / Forestry, Faculty of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/19639
Date January 1975
CreatorsFeller, M. C. (Michael Charles)
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0025 seconds