The use of ocean wave energy for electricity production has considerable potential, though it has proven to be difficult. A technology utilizing the heaving (up-and-down) motions of the waves was conceived at Uppsala University in the early 2000´s, and is being further developed for commercial use by Seabased Industry AB. The purpose of this master´s degree project was to increase the knowledge of the environmental performance of Seabased´s wave energy conversion concept and identifying possible areas of improvement. This was done by conducting a life cycle assessment (LCA) of a hypothetical prototype wave power plant. All flows of materials, energy, emissions and waste were calculated for all stages of a wave power plant´s life cycle. The potential environmental impact of these flows was then assessed, using the following impact categories: • Emission of greenhouse gases • Emission of ozone depleting gases • Emission of acidifying gases • Emission of gases that contribute to the forming of ground-level ozone • Emission of substances to water contributing to oxygen depletion (eutrophication) • Energy use (renewable and non-renewable) • Water use The methodology used was that prescribed by the ISO standard for Environmental Product Declarations (EPD) and further defined by the International EPD Programme.The potential environmental impact was calculated per kWh of wave power electricity delivered to the grid. The main result of the study is that the potential environmental impact of a wave power plant mainly stems from the manufacturing phase. In particular, the production of steel parts makes a large contribution to the overall results. Future wave power plant designs are expected to be considerably more material efficient, meaning that there are large possibilities to improve the environmental performance of this technology.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-162582 |
Date | January 2009 |
Creators | Dahlsten, Hilda |
Publisher | Institutionen för energi och teknik, SLU |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC ES, 1650-8300 ; 09016 |
Page generated in 0.0017 seconds