by Chan Kam Wai Clifford. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 105-108). / Text in English; abstracts in English and Chinese. / by Chan Kam Wai Clifford. / Abstract --- p.i / Acknowledgements --- p.iii / Contents --- p.iv / List of Figures --- p.vii / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Motivations of the Project --- p.1 / Chapter 1.2 --- Historical Background --- p.1 / Chapter 1.3 --- Objective and Outline of Thesis --- p.3 / Chapter Chapter 2. --- Reviews on One-dimensional Dynamical Cavity --- p.4 / Chapter 2.1 --- Formalism --- p.4 / Chapter 2.2 --- Methods of Solution --- p.6 / Chapter 2.2.1 --- Phase Construction (R function) --- p.6 / Chapter 2.2.2 --- Instantaneous Mode Expansion --- p.12 / Chapter 2.2.3 --- Transformation Method --- p.15 / Chapter 2.3 --- Numerical Results --- p.15 / Chapter 2.3.1 --- Some Results using R function --- p.16 / Chapter 2.3.2 --- Some Results using Instantaneous Mode Decomposition --- p.24 / Chapter 2.3.3 --- Remarks on the Numerical Scheme used in Transformation Method --- p.28 / Chapter 2.3.4 --- "Comparisons of Results obtained by Phase Construction, In- stantaneous Mode Decomposition and Transformation" --- p.28 / Chapter 2.4 --- Conclusion --- p.30 / Chapter Chapter 3. --- Fixed-point Analysis for the One-dimensional Cavity --- p.31 / Chapter 3.1 --- Introduction --- p.31 / Chapter 3.2 --- What are the fixed-points? --- p.32 / Chapter 3.3 --- Characteristics of Fixed-points --- p.36 / Chapter 3.4 --- Fixed-points and Geometric Resonance --- p.39 / Chapter Chapter 4. --- Electromagnetic Field in an Undulating Spherical Cavity --- p.44 / Chapter 4.1 --- Classical Electromagnetic field theory --- p.44 / Chapter 4.2 --- Boundary Conditions --- p.46 / Chapter 4.3 --- The Motion of Cavity Surface --- p.47 / Chapter Chapter 5. --- Methods of Solution and Results to the Spherical Cavity --- p.48 / Chapter 5.1 --- Introduction --- p.48 / Chapter 5.2 --- Mode Decomposition and Transformation Method revisited --- p.49 / Chapter 5.2.1 --- Mode Decomposition --- p.49 / Chapter 5.2.2 --- Transformation Method --- p.50 / Chapter 5.2.3 --- Remarks on the use of Instantaneous Mode Expansion and Transformation Method --- p.51 / Chapter 5.3 --- The Ge(z) function --- p.52 / Chapter 5.3.1 --- The Ge(z) function as a solution of the scalar wave equation --- p.52 / Chapter 5.3.2 --- Numerical Results --- p.54 / Chapter 5.4 --- The Me(z) function --- p.60 / Chapter 5.4.1 --- Formalism --- p.60 / Chapter 5.4.2 --- Comparison of Me(z) with Ge(z) --- p.62 / Chapter 5.4.3 --- Numerical Results --- p.63 / Chapter 5.5 --- Conclusions and Discussions --- p.93 / Chapter 5.5.1 --- Geometric Resonances --- p.93 / Chapter 5.5.2 --- Harmonic Resonances --- p.94 / Chapter Chapter 6. --- Conclusion --- p.95 / Appendix A. Electromagnetic Field in Spherical Cavity --- p.97 / Chapter A.1 --- Field Strength --- p.97 / Chapter A.2 --- Field Energy --- p.98 / "Appendix B. Construction of Ψe(r,t) by G(z)" --- p.100 / Appendix C. The Arbitrary Part GH(z) of Ψe(r,t) --- p.103 / Bibliography --- p.105
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322789 |
Date | January 1999 |
Contributors | Chan, Kam Wai Clifford., Chinese University of Hong Kong Graduate School. Division of Physics. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, x, 108 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0019 seconds