從上世紀80年代中期開始,矽光子學在研究與工業界都有快速的發展。矽光子學有望實現電子與光子電路的一體化集成,從而使得光電子系統的價格和能耗大大地降低。基於這樣的特性,矽光子學被提出用於當前的光通信系統。 / 在這篇論文中,我們將研究矽波導在光信號的成型和重定時中的應用。首先,我們研究基於自由載流子色散效應的矽調製器。調製器的原理和設計方法將會詳細地討論。我們所設計的調製器是基於馬赫-曾德爾干涉儀。實驗表明,製作好的調製器的3dB電光帶寬達到了5GHz。當調製器進行非歸零開關鍵控調製時,調製器的速率可以達到12.45GHz,且誤碼率在10⁻⁹以下。同時,調製器用於正交頻分複用調製格式的結果也會給出。接著,我們研究矽波導中產生的四波混頻效應如何增強信號消光比和減少時域抖動。我們通過實驗表明了,矽波導中的四波混頻效應可以增強單通道的10和40Gb/s歸零開關鍵控信號的消光比。我們接著將四波混頻效應應用於時域交叉的雙通道歸零開關鍵控信號。實驗結果也表明,兩個通道的消光比都能得到增強。我們也通過實驗表明,四波混頻效應可以減少10Gb/s歸零開關鍵控信號的時域抖動。最後,我們用矽波導和chirped光纖光栅實現了一套可調光延遲系統。當這套系統分別應用於10Gb/s的光脈衝、非歸零開關監控信號和歸零的差分相位鍵控信號時,延遲效果都一致。 / Emerging from the mid-1980s, the field of silicon photonics has been rapidly growing, in both research and industry. Silicon photonics has the great potential of monolithic integration of both electronic and photonic circuits. With monolithic integration, the cost and power consumption of photonic systems can be cut down greatly. Due to these features, silicon photonics is proposed for applications in today’s optical communication systems. / In this thesis, silicon waveguide devices for shaping and retiming of optical signals will be investigated. Firstly, silicon Mach-Zehnder modulators based on free-carrier plasma dispersion effect are explored for amplitude modulation of optical signals. The principle and design of the modulators are discussed in details. Experimental results show that 3 dB electro-optic bandwidth of the modulators is 5 GHz, while 10⁻⁹ bit error rate can be obtained for up to 12.45 Gb/s modulated non-return-to-zero (NRZ) on-off keying (OOK) signal. Also, the results of the modulators for orthogonal frequency division multiplexing modulation will be given. Then, silicon waveguides are used as nonlinear medium of four-wave mixing (FWM) effect for extinction ratio enhancement and timing jitter reduction of optical signals. Extinction ratio enhancement of single channel 10 and 40 Gb/s return-to-zero (RZ) OOK signal is experimentally demonstrated. Following that we extend the scheme for two 40 Gb/s RZ-OOK channels which are time-interleaved and obtain extinction ratio enhancement for both. Timing jitter reduction of 10 Gb/s RZ-OOK signal is also achieved by FWM effect in silicon waveguides. Finally, a tunable delay line incorporating a silicon waveguide and a chirped fiber Bragg grating is realized for timing alignment of optical signals. The tunable delay line is used for 10 Gb/s optical pulse, NRZ-OOK signal and RZ differential phase-shift keying (DPSK) signal, showing consistent performance for all. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Chen, Yimin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Abstracts also in Chinese. / Acknowledgements --- p.ii / Abstract --- p.iv / Table of Contents --- p.vii / List of Tables --- p.x / List of Figures --- p.xi / Chapter Chapter 1 --- Introduction --- p.17 / Chapter 1.1 --- Research context --- p.17 / Chapter 1.2 --- Waveguides and modulators in silicon photonics --- p.18 / Chapter 1.2.1 --- Silicon photonics --- p.20 / Chapter 1.2.2 --- Silicon modulator --- p.23 / Chapter 1.2.3 --- Silicon waveguide as nonlinear medium --- p.24 / Chapter 1.3 --- Purpose and outline of this work --- p.26 / References --- p.26 / Chapter Chapter 2 --- Silicon modulators for optical communications --- p.28 / Chapter 2.1 --- Introduction --- p.28 / Chapter 2.1.1 --- Motivation for high capacity transmission system --- p.28 / Chapter 2.1.2 --- Literature review of silicon modulators --- p.30 / Chapter 2.2 --- Design of silicon modulators --- p.38 / Chapter 2.2.1 --- Optical circuit of silicon modulators --- p.38 / Chapter 2.2.2 --- p-n junction --- p.43 / Chapter 2.2.3 --- Electronic circuit --- p.44 / Chapter 2.3 --- Fabrication process --- p.46 / Chapter 2.4 --- Experimental results --- p.47 / Chapter 2.4.1 --- Testing results --- p.48 / Chapter 2.4.2 --- OFDM modulation --- p.58 / Chapter 2.5 --- Summary --- p.61 / References --- p.64 / Chapter Chapter 3 --- Signal quality enhancement using four-wave mixing in silicon waveguides --- p.68 / Chapter 3.1 --- Introduction --- p.68 / Chapter 3.1.1 --- All-optical wavelength conversion and all-optical regeneration --- p.68 / Chapter 3.1.2 --- Generic basics of four-wave mixing --- p.69 / Chapter 3.1.3 --- Four-wave mixing in silicon waveguides --- p.71 / Chapter 3.2 --- Extinction ratio enhancement using FWM in a silicon waveguide --- p.77 / Chapter 3.2.1 --- Extinction ratio enhancement of 10 and 40 Gb/s RZ-OOK signals --- p.77 / Chapter 3.2.1.1 --- Principle --- p.78 / Chapter 3.2.1.2 --- Experimental setup and results --- p.78 / Chapter 3.2.1.3 --- Discussion --- p.82 / Chapter 3.2.2 --- Extinction ratio enhancement of two 40 Gb/s RZ-OOK channels --- p.82 / Chapter 3.2.2.1 --- Principle --- p.83 / Chapter 3.2.2.2 --- Experimental setup and results --- p.84 / Chapter 3.2.2.3 --- Discussion --- p.89 / Chapter 3.3 --- Timing jitter reduction using FWM in silicon waveguides --- p.90 / Chapter 3.3.1 --- Principle --- p.91 / Chapter 3.3.2 --- Experimental setup and results --- p.92 / Chapter 3.3.2.1 --- Timing jitter reduction of RZ-OOK signal --- p.92 / Chapter 3.3.2.2 --- Timing jitter reduction of AMI signal --- p.96 / Chapter 3.3.3 --- Discussion --- p.101 / Chapter 3.4 --- Summary --- p.102 / References --- p.103 / Chapter Chapter 4 --- Optical tunable delay line incorporating a silicon waveguide and a chirped fiber Bragg grating --- p.106 / Chapter 4.1 --- Introduction --- p.106 / Chapter 4.1.1 --- Motivation --- p.106 / Chapter 4.1.2 --- Principle --- p.107 / Chapter 4.1.3 --- Characteristics of the silicon waveguide and chirped FBG --- p.108 / Chapter 4.2 --- Tunable delay line for 10 Gb/s optical signals --- p.111 / Chapter 4.2.1 --- 10 Gb/s optical pulse chain --- p.111 / Chapter 4.2.1.1 --- Experimental setup and results --- p.111 / Chapter 4.2.2 --- 10 Gb/s NRZ-OOK signal --- p.115 / Chapter 4.2.2.1 --- Experimental setup and results --- p.115 / Chapter 4.2.3 --- 10 Gb/s RZ-DPSK signal --- p.119 / Chapter 4.2.3.1 --- Experimental setup and results --- p.119 / Chapter 4.3 --- Summary --- p.124 / References --- p.126 / Chapter Chapter 5 --- Conclusions and future work --- p.129 / Chapter 5.1 --- Conclusions --- p.129 / Chapter 5.2 --- Future work --- p.131 / Chapter Appendix A. --- List of Symbols --- p.133 / Chapter Appendix B. --- Abbreviations --- p.135 / Chapter Appendix C. --- Publications --- p.139
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328545 |
Date | January 2013 |
Contributors | Chen, Yimin., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | electronic resource, electronic resource, remote, 1 online resource (xvi, 17-140 leaves) : ill. (some col.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0034 seconds