A study on the behaviour of wave-packets and random disturbances, introduced by the vibrating-ribbon technique in a Blasius boundary layer, is presented. The experiments were conducted in the VPI & SU low turbulence wind tunnel. The flat plate model was constructed from an aluminum-paper honeycomb laminate and an aluminum leading edge with an elliptical profile.
A theoretical model was developed to verify the random and step-function-form motion of the vibrating ribbon. In the case of random disturbance introduction it was found that the random disturbances behave like infinite number, single-frequency waves and measurements of their growth made possible to verify regions of the neutral-stability curve.
In the case of wave-packet creation it was found that the wave packets behave like a structure that consists of waves of certain frequencies that grow or decay not necessarily according to the stability curve but in that way as to maintain the wave-packet structure.
Their growth as they move downstream and their quick destruction into turbulence was compared to previously published data. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/74471 |
Date | January 1982 |
Creators | Costis, Christopher E. |
Contributors | Engineering Mechanics |
Publisher | Virginia Polytechnic Institute and State University |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Thesis, Text |
Format | iv, 108, [1] leaves, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 8890665 |
Page generated in 0.011 seconds