A motion compensated ADV system was evaluated to determine its ability to
make measurements necessary for characterizing the variability of the ambient current in
the Gulf Stream. The impact of IMU error relative to predicted turbulence spectra was
quantified, as well as and the ability of the motion compensation approach to remove
sensor motion from the ADV measurements. The presented data processing techniques
are shown to allow the evaluated ADV to be effectively utilized for quantifying ambient
current fluctuations from 0.02 to 1 Hz (50 to 1 seconds) for dissipation rates as low as
3x10-7. This measurement range is limited on the low frequency end by IMU error,
primarily by the calculated transformation matrix, and on the high end by Doppler noise.
Inshore testing has revealed a 0.37 Hz oscillation inherent in the towfish designed and
manufactured as part of this project, which can nearly be removed using the IMU. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_13661 |
Contributors | Egeland, Matthew Nicklas (author), von Ellenrieder, Karl (Thesis advisor), VanZwieten, James H. (Thesis advisor), Florida Atlantic University (Degree grantor), College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 91 p., application/pdf |
Rights | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds