Rapid progress is being made towards the realization of autonomous cars. Since the technology is in its early stages, human intervention is still necessary in order to ensure hazard-free operation of autonomous driving systems. Substantial research efforts are underway to enhance driver and passenger safety in autonomous cars. Toward that end GreedyHaarSpiker, a real-time vision-based lane detection algorithm is proposed for road lane detection in different weather conditions. The algorithm has been implemented in Python 2.7 with OpenCV 3.0 and tested on a Raspberry Pi 3 Model B ARMv8 1GB RAM coupled to a Raspberry Pi camera board v2. To test the algorithm’s performance, the Raspberry Pi and the camera board were mounted inside a Jeep Wrangler. The algorithm performed better in sunny weather with no snow on the road. The algorithm’s performance deteriorated at night time or when the road surface was covered with snow.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-6686 |
Date | 01 May 2017 |
Creators | Sudini, Vikas Reddy |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0018 seconds