This paper addresses the problem of detecting K-complexes in sleep EEG. The study of sleep has become very essential to diagnose the brain disorders and analysis of brain activities. Since Kcomplex can have a wide variety of shapes it is very difficult to detect the K-complexes manually. In this paper, I present an automatic method for K-complexes detection based wavelet transform,TKEO and method for classification using feedforward multilayer neural network designed in Matlab. Detection performance reached the value approx. from 52,9 to 83,6 %.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:242089 |
Date | January 2016 |
Creators | Pecníková, Michaela |
Contributors | Ronzhina, Marina, Kozumplík, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds