This work concentrates on the application of diversity techniques and space time block coding
for future high speed mobile wireless communications on multicarrier systems.
At first, alternative multicarrier kernels robust for high speed doubly-selective fading channel are
sought. They include the comparisons of discrete Fourier transform (DFT), fractional Fourier
transform (FrFT) and wavelet transform (WT) multicarrier kernels. Different wavelet types,
including the raised-cosine spectrum wavelets are implemented, evaluated and compared.
From different wavelet families, orthogonal wavelets are isolated from detailed evaluations and
comparisons as suitable for multicarrier applications. The three transforms are compared over a
doubly-selective channel with the WT significantly outperforming all for high speed conditions up
to 300 km/hr.
Then, a new wavelet is constructed from an ideal filter approximation using established wavelet
design algorithms to match any signal of interest; in this case under bandlimited criteria. The
new wavelet showed better performance than other traditional orthogonal wavelets.
To achieve MIMO communication, orthogonal space-time block coding, OSTBC, is evaluated
next. First, the OSTBC is extended to assess the performance of the scheme over extended
receiver diversity order. Again, with the extended diversity conditions, the OSTBC is
implemented for a multicarrier system over a doubly-selective fading channel. The MIMO-OFDM
systems (implemented using DFT and WT kernels) are evaluated for different operating
frequencies, typical of LTE standard, with Doppler effects. It was found that, during high mobile
speed, it is better to transmit OFDM signals using lower operating frequencies.
The information theory for the 2-transmit antenna OSTBC does not support higher order
implementation of multi-antenna systems, which is required for the future generation wireless
communications systems. Instead of the OSTBC, the QO-STBC is usually deployed to support
the design of higher order multi-antenna systems other than the 2-transmit antenna scheme.
The performances of traditional QO-STBC methods are diminished by some off-diagonal
(interference) terms such that the resulting system does not attain full diversity. Some methods
for eliminating the interference terms have earlier been discussed. This work follows the
construction of cyclic matrices with Hadamard matrix to derive QO-STBC codes construction
which are N-times better than interference free QO-STBC, where N is the number of transmit
antenna branches.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/14400 |
Date | January 2015 |
Creators | Anoh, Kelvin O.O. |
Contributors | Abd-Alhameed, Raed, Jones, Steven M.R. |
Publisher | University of Bradford, School of Engineering and Informatics |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Thesis, doctoral, PhD |
Rights | <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>. |
Page generated in 0.0015 seconds