Return to search

Multi-Resolution Analysis Using Wavelet Basis Conditioned on Homogenization

This dissertation considers an approximation strategy using a wavelet reconstruction scheme for solving elliptic problems. The foci of the work are on (1) the approximate solution of differential equations using multiresolution analysis based on wavelet transforms and (2) the homogenization process for solving one and two-dimensional problems, to understand the solutions of second order elliptic problems. We employed homogenization to compute the average formula for permeability in a porous medium. The structure of the associated multiresolution analysis allows for the reconstruction of the approximate solution of the primary variable in the elliptic equation. Using a one-dimensional wavelet reconstruction algorithm proposed in this work, we are able to numerically compute the approximations of the pressure variables. This algorithm can directly be applied to elliptic problems with discontinuous coefficients.We also implemented Java codes to solve the two dimensional elliptic problems using our methods of solutions. Furthermore, we propose homogenization wavelet reconstruction algorithm, fast transform and the inverse transform algorithms that use the results from the solutions of the local problems and the partial derivatives of the pressure variables to reconstruct the solutions.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8423
Date01 December 2018
CreatorsLasisi, Abibat Adebisi
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0022 seconds