Return to search

Mesoscopic quantum interference experiments in InGaAs and GaAs two-dimensional systems

The study of quantum interference in solid-state systems yields insight in fundamental properties of mesoscopic systems. Electron quantum interference constitutes an important method to explore mesoscopic physics and quantum decoherence. This dissertation focuses on two-dimensional (2D) electron systems in $delta-$Si doped n-type In$_{0.64}$Ga$_{0.36}$As/In$_{0.45}$Al$_{0.55}$As, 2D hole systems in Si-doped p-type GaAs/Al$_{0.35}$Ga$_{0.65}$As and C-doped p-type GaAs/\Al$_{0.24}$Ga$_{0.76}$As heterostructures. The low temperature experiments study the magnetotransport of nano- and micro-scale lithographically defined devices fabricated on the heterostructures. These devices include a single ring interferometer and a ring interferometer array in 2D electron system, Hall bar geometries and narrow wires in 2D hole systems. The single ring interferometer yields pronounced Aharonov-Bohm (AB) oscillations with magnetic flux periodicity of h/e over a wide range of magnetic field. The periodicity was confirmed by Fourier transformation of the oscillations. The AB oscillation amplitude shows a quasi-periodic modulation over applied magnetic field due to local magnetic flux threading through the interferometer arms. Further study of current and temperature dependence of the amplitude of the oscillations indicates that the Thouless energy forms the measure of excitation energies giving quantum decoherence. An in-plane magnetic field was applied to the single ring interferometer to study the Berry's phase and the Aharonov-Casher effect. The ring interferometer array yields both AB oscillations and Altshuler-Aronov-Spivak (AAS) oscillations, the latter with magnetic flux periodicity of h/2e. The AAS oscillations require time-reversal symmetry and hence can be used to qualify time-reversal symmetry breaking. More importantly, the fundamental mesoscopic dephasing length associated with time-reversal symmetry breaking under applied magnetic field, an effective magnetic length, can be obtained by the analysis of the AAS oscillations over magnetic field. A theoretical model for confined ballistic system is confirmed by experimental data fitting. The AAS oscillations are barely resolved above 0.16 T and their amplitude decays with increasing magnetic field. The AB oscillations exist till above 2 T and their amplitude doesn't show the monotonic decay with increasing magnetic field. The different behavior of the AAS and AB oscillations originates in the different symmetries, respectively temporal and spatial, that they are sensitive to. The p-type 2D GaAs system has strong spin-orbit interaction (SOI). Antilocalization in a Hall bar geometry was analyzed by the 2D Hikami-Larkin-Nagaoka (HLN) theory to obtain the spin coherence time and phase coherence time. The 2D hole systems we studied have low density and high mobility, quite different from the 2D electron systems. These high-quality 2D hole systems demonstrate semi-classical ballistic phenomena in mesoscopic structures preferentially to quantum-coherence phenomena. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/52953
Date16 June 2015
CreatorsRen, Shaola
ContributorsPhysics, Heremans, Jean J., Soghomonian, Victoria G., Scarola, Vito W., Asryan, Levon V.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0073 seconds