High cycle fatigue tests were carried out on a medium strength continuous casting AA 5754 Al alloy, and new generation high strength AA 2026 and AA 2099 Al alloys. The effect of texture on fatigue properties and short crack behavior were studied. The strengthening mechanisms were also thoroughly investigated for the two high strength alloys.Texture played an important role in the anisotropy of fatigue strength for the AA 5754 Al alloy. Being a solution strengthened alloy, it had a fatigue strength of 120% σy. High strength Al alloys had a strong tendency for planar slip due to the high density of coherent and shearable precipitates in the alloys. Texture was a key factor controlling the crack initiation and propagation. The crack path and the possible minimum twist angles were measured using EBSD and calculated theoretically by a crystallographic model. Based on the micro-texture measured by EBSD, the crack paths were predicted for the AA 2099 alloy and confirmed by the observed values.The excellent balance of superior fatigue properties and high tensile strength of AA 2026 and AA 2099 was attributed to the reduced population of Fe-containing particles, homogeneously distributed precipitates and dislocations. The addition of Zr coupled with the optimized thermo-mechanical treatment strongly restrained the recrystallization, refined the grain structure and promoted the homogenization of the precipitates. Moreover, the retainment of the deformation texture developed during the hot extrusion provided significant orientation strengthening in the high strength Al alloys.Fatigue cracks tended to initiate at coarse second phase particles on sample surfaces and the crack population varied markedly with the applied stresses in the high strength Al alloys. The relationship between of the crack population and the applied stress level was studied and quantified by a Weibull distribution function. Since the measured cracknumbers were associated with the crack initiate sites (i.e., the weakest links) in an alloy, the fatigue weakest-link density, which is defined as the crack population per unit area when stress close to the ultimate tensile stress, and the weakest-link strength distribution can all be calculated and regarded as a property of the studied materials.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1525 |
Date | 01 January 2007 |
Creators | Li, Jinxia |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Doctoral Dissertations |
Page generated in 0.0019 seconds