Return to search

Mapping and characterisation of surface damage and wear mechanisms in gun barrels : Gun barrels exposed to cyclic thermo-mechanical loading / Kartläggning och karakterisering av ytskador och slitagemekanismer i eldrör : Eldrör utsatta för termo-mekanisk cyklisk last

Gun barrels are an important component in advanced defence systems. The gun barrels are used for direct and indirect fire and the material of the gun barrel is exposed to great strains and high temperatures. This sets high demands on the material of the gun barrel. During firing the gun barrel can be damaged. The first damage in gun barrels is the wear of the rifling followed by fatigue. When fatigue occurs cracks can propagate downwards into the bore and could result in catastrophic failure. Therefore investigation regarding the wear, the mechanisms and the underlying factors causing the damage will be performed. How and where the wear in gun barrels occur and also which wear mechanisms causing the wear. Wear in gun barrels involves extreme conditions during firing such as high gas pressure and high temperature from the burning propellant. This thesis work aims to understand how and why wear and damaging mechanisms in gun barrels occurs. Moreover how other ballistic factors influences have on the wear. The wear in gun barrels is caused by erosion from the combustion gases or/and sliding wear caused by the high-speed projectile. The phenomena of wear are complicated and factors like deformation state, types of wear, environment and process are interrelated with each other. These give the rise of wear. In this thesis, samples from three gun barrels were analysed. A new unworn gun barrel, a medium worn gun barrel and a severely worn gun barrel. From the used gun barrels 4 critical positions were identified, then samples from both surface and cross-section were obtained from the gun barrels. The surface and cross-section were analysed using different methods including optical light microscopy and scanning electron microscopy to characterise the surface damage and wear mechanisms. The results from the investigation revealed the dominating wear mechanism to be thermal and chemical erosion at the positions closest to the combustion chamber with heat checks as its signature feature. The heat checks are associated with fatigue cracks developed at the surface and during thermo-mechanical loading, allows it to propagate down into the surface. For both samples at position 2, after the start of the rifling, adhesive wear was obtained too. The adhesive wear was induced by material pick-up from the driving band of the projectile during sliding. In other meaning, the material is transferred from the counter-face to the bore surface. The severely worn gun barrel had been subjected to sliding wear at the muzzle end compared to the medium worn gun barrel which hadn’t experience the same wear rate at the same position. The analysis of the cross-section examination revealed information about the structure and condition of the material. To obtain more information about mechanical properties, a hardness test was performed. The hardness test revealed a hard but brittle surface which can be sheared by the frictional force caused by the sliding projectile. The analysis of the gun barrels revealed information about wear mechanisms and damages in medium and severely worn gun barrels. The detected wear mechanism was thermal erosion, chemical erosion, mechanical erosion and sliding wear.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-79026
Date January 2020
CreatorsPerkovic, Martin
PublisherKarlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds