This dissertation describes research designed to enhance hydrometeorological forecasts. The objective of the research is to deliver an optimal methodology to produce reliable, skillful and economically valuable probabilistic temperature and precipitation forecasts.
Weather plays a dominant role for energy companies relying on forecasts of watershed precipitation and temperature to drive reservoir models, and forecasts of temperatures to meet energy demand requirements. Extraordinary precipitation events and temperature extremes involve consequential water- and power-management decisions.
This research compared weighted-average, recursive, and model output statistics bias-correction methods and determined optimal window-length to calibrate temperature and precipitation forecasts. The research evaluated seven different methods for daily maximum and minimum temperature forecasts, and three different methods for daily quantitative precipitation forecasts, within a region of complex terrain in southwestern British Columbia, Canada.
This research then examined ensemble prediction system design by assessing a three-model suite of multi-resolution limited area mesoscale models. The research employed two different economic models to investigate the ensemble design that produced the highest-quality, most valuable forecasts.
The best post-processing methods for temperature forecasts included moving-weighted average methods and a Kalman filter method. The optimal window-length proved to be 14 days. The best post-processing methods for achieving mass balance in quantitative precipitation forecasts were a moving-average method and the best easy systematic estimator method. The optimal window-length for moving-average quantitative precipitation forecasts was 40 days. The best ensemble configuration incorporated all resolution members from all three models.
A cost/loss model adapted specifically for the hydro-electric energy sector indicated that operators managing rainfall-dominated, high-head reservoirs should lower their reservoir with relatively low probabilities of forecast precipitation. A reservoir-operation model based on decision theory and variable energy pricing showed that applying an ensemble-average or full-ensemble precipitation forecast provided a much greater profit than using only a single deterministic high-resolution forecast.
Finally, a bias-corrected super-ensemble prediction system was designed to produce probabilistic temperature forecasts for ten cities in western North America. The system exhibited skill and value nine days into the future when using the ensemble average, and 12 days into the future when employing the full ensemble forecast. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/979 |
Date | 11 1900 |
Creators | McCollor, Douglas |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Format | 5786019 bytes, application/pdf |
Rights | Attribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Page generated in 0.0017 seconds