Return to search

The Tensile behaviour of non-uniform fibres and fibrous composites.

This work investigates the tensile behaviour of non-uniform fibres and fibrous composites. Wool fibres are used as an example of non-uniform fibres because they're physical, morphological and geometrical properties vary greatly not only between fibres but also within a fibre. The focus of this work is on the effect of both between-fibre and within-fibre diameter variations on fibre tensile behaviour. In addition, fit to the Weibull distribution by the non-brittle and non-uniform visco-elastic wool fibres is examined, and the Weibull model is developed further for non-uniform fibres with diameter variation along the fibre length. A novel model fibre composite is introduced to facilitate the investigation into the tensile behaviour of fibre-reinforced composites.
This work first confirms that for processed wool, its coefficient of variation in break force can be predicted from that of minimum fibre diameters, and the prediction is better for longer fibres. This implies that even for processed wool, fibre breakage is closely associated with the occurrence of thin sections along a fibre, and damage to fibres during processing is not the main cause of fibre breakage.
The effect of along-fibre diameter variation on fibre tensile behaviour of scoured wool and mohair is examined next. Only wet wool samples were examined in the past. The extensions of individual segments of single non-uniform fibres are measured at different strain levels. An important finding is the maximum extension (%) (Normally at the thinnest section) equals the average fibre extension (%) plus the diameter variation (CV %) among the fibre segments. This relationship has not been reported before. During a tensile test, it is only the average fibre extension that is measured.
The third part of this work is on the applicability of Weibull distribution to the strength of non-uniform visco-elastic wool fibres. Little work has been done for wool fibres in this area, even though the Weibull model has been widely applied to many brittle fibres. An improved Weibull model incorporating within-fibre diameter variations has been developed for non-uniform fibres. This model predicts the gauge length effect more accurately than the conventional Weibull model.
In studies of fibre-reinforced composites, ideal composite specimens are usually prepared and used in the experiments. Sample preparation has been a tedious process. A novel fibre reinforced composite is developed and used in this work to investigate the tensile behaviour of fibre-reinforced composites. The results obtained from the novel composite specimen are consistent with that obtained from the normal specimens.

Identiferoai:union.ndltd.org:ADTP/217080
Date January 2001
CreatorsZhang, Yuping, mikewood@deakin.edu.au
PublisherDeakin University. School of Engineering and Technology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.deakin.edu.au/disclaimer.html), Copyright Yuping Zhang

Page generated in 0.0019 seconds