Return to search

Geração de novas correlações da soma-ponderada-de-gases-cinza para H2O e CO2 em alta pressão

A radiação térmica é frequentemente considerada um mecanismo de transferência de calor muito importante em processos de combustão em alta pressão, devido à presença de meios participantes e às altas temperaturas envolvidas. Resolver a radiação térmica em meios participantes é um problema complexo devido à natureza integro-diferencial da equação governante e à dependência espectral altamente irregular das propriedades de radiação. Atualmente, o método mais preciso para resolver a integração espectral é o método linha-porlinha (LBL), que possui um custo computacional muito elevado. Para contornar essa dificuldade, o problema espectral é geralmente resolvido usando modelos espectrais e, consequentemente, a equação da transferência radiativa (RTE) é simplificada. Um destes modelos é o da soma-ponderada-de-gases-cinza (WSGG), que substitui o comportamento espectral altamente irregular do coeficiente de absorção, por bandas de coeficientes de absorção uniforme e tem mostrado um bom desempenho em diversas aplicações, mesmo sendo um modelo bastante simplificado. Entretanto, recentemente alguns autores não obtiveram bons resultados ao tentar aplicar o WSGG a problemas de combustão em alta pressão. Este artigo desenvolve um modelo WSGG para CO2 e H2O em condições de alta pressão. Para validar o modelo, a emitância total é calculada usando os coeficientes WSGG e comparada à solução do LBL obtida usando o banco de dados espectrais HITEMP 2010. Os resultados mostraram grande convergência entre os valores de emitância de ambos os métodos, mesmo para valores de alta pressão, tanto para o CO2 quanto para H2O, provando que o método WSGG é aplicável a condições de alta pressão. O modelo também foi validado pelo cálculo do fluxo de calor e termo fonte radiativo, e comparando-os com os obtidos através do método LBL. O H2O teve melhores resultados para baixas pressões, enquanto o CO2 apresentou melhores resultados para pressões mais altas. O efeito da pressão total sobre a solução de LBL foi maior para o H2O, o que pode ser um dos motivos pelo qual os desvios foram maiores para os casos de alta pressão. / Thermal radiation is often a very important heat transfer mechanism in high pressure combustion processes due to the presence of participating media and the high temperatures involved. Solving thermal radiation in participating media is a tough problem due to the integro-differential governing equation and the complex spectral dependence of radiation properties. Currently, the most accurate method to solve the spectral integration is the line-byline (LBL) method, which has a very high computational cost. In order to avoid this drawback the spectral problem is usually solved using spectral models, and as a consequence the radiative transfer equation (RTE) is simplified. One of the models is the weighted-sum-ofgray- gases (WSGG) which replaces the highly irregular spectral behavior of the absorption coefficient by bands of uniform absorption coefficients, and has shown great performance a lot of applications even though it is a very simple model. However, recently some authors didn’t have good results when trying to apply the WSGG to high pressure combustion problems. This thesis develops a WSGG model for both CO2 and H2O on high pressure conditions. In order to validate the model the total emittance is calculated using the WSGG coefficients and compared to the LBL solution which was obtained using the HITEMP 2010 spectral emissivity database. The results showed that the emittance values from both methods were very close even for high pressure values for both CO2 and H2O proving that the WSGG method is applicable to high pressure conditions. The model was also validated by calculating the radiative heat flux and source, and comparing them with the LBL method. H2O had better results for low pressures while CO2 had better results for higher pressures. The effect of total pressure on the LBL solution was higher for H2O, which might be the reason why deviations were higher at high pressure values.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/164594
Date January 2017
CreatorsCoelho, Felipe Ramos
ContributorsFrança, Francis Henrique Ramos
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds