Drying is an energy intensive process. The conventional heat-based drying methods often produce changes in the physico-chemical properties of products. A newly developed electrohydrodynamic (EHD) drying technique may be much less destructive to these heat-sensitive materials. This thesis presents comparative analyses of product deterioration in EHD-dried whey proteins, using electrophoresis, differential scanning calorimetry (DSC), and color measurements. Gel electrophoresis showed the disappearance of bands and reduction in band intensities depending upon the temperature of the oven in which the whey protein was dried. The thermograms of the differential scanning calorimeter varied considerably as the temperature of oven-drier increased. EHD, air-drying, and their combination showed no significant change in the electrophoretograms and thermograms compared with the native protein. Color measurements also indicated no significant change in color of EHD-dried whey protein whereas oven-drying produced darker colors from the original. These results allowed us to conclude that physico-chemical properties of whey protein remained intact after drying with EHD.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.20605 |
Date | January 1997 |
Creators | Xue, Xin, 1972- |
Contributors | Barthakuy, N. N. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Natural Resource Sciences.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001609065, proquestno: MQ44316, Theses scanned by UMI/ProQuest. |
Page generated in 0.0019 seconds