Return to search

Formulation of Whey Protein Stabilized Multilayered Microemulsion and Nanoemulsion Systems with Hyperoxidative Curcumin

A primary emulsion with whey protein isolate (WPI) and hexanoic acid was prepared, and chitosan (Ch) (0.01%, 0.02%, and 0.03%) was added to evaluate its impact on particle size distribution of the emulsion. NaCl (0, 20, 40, and 80 mM) was added to increase ionic interactions to stabilize the multilayer emulsion. Lecithin (0.5%, 1%, 2%, 3 %, w/v) was mixed with the primary emulsion in order to form a multilayer, and casein hydrolysate (CH) was used to stabilize the tertiary emulsion system without the use of NaCl for 28 d at 4 °C. Stable O/W nanoemulsions were generated for use as nano-vesicular vehicles (NVV) to carry Curcumin (CU). Two important variables, (1) addition of casein hydrolysate (CH) (1:50, w/w WPI) and, (2) use of high pressure (140 and 210 MPa), were studied for their effect on the stabilization of monodispersed NVV and persistence of antioxidant activity of the CU as cargo in the NVV throughout storage. Addition of CH reduced nano-particle size and increased emulsion stability with UHPH pressure. The nanoparticle distribution was not changed by the addition of CU. Addition of casein hydrolysate reduced particle size as well as enhanced the positive functional properties of the NVV. Similar trends were observed in zeta-potential, surface energy, contact angle and antioxidant efficacy of the NVV, both with and without CU when UHPH was applied. The effect of Ultraviolet (UV) radiation (254 nm) on the stability of O/W nanoemulsion systems was investigated. A nano vesicular vehicle (NVV) was generated using ultra-high pressure homogenization (UHPH) that was stabilized using whey protein isolate (WPI) (1%, w/v), Tween 20 (20% w/w WPI) and casein hydrolysate (CH) (1:50 of WPI, w/w). Coarse emulsions were prepared by blending for three min. The coarse emulsion was exposed to UV radiation (0-60 min), followed by a single-pass of UHPH at 140 and 210 MPa. The UHPH treated NVV-CU had greater (P<0.05) short and long term antioxidant properties. After 28 d of storage, the CU-NVV treated at 210 MPa retained 7.0 and 1.4% greater AA and AP, respectively, when compared to the unpressurized CU-NVV.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3328
Date08 December 2017
CreatorsMukherjee, Soma
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0027 seconds